Skip to main content
Log in

Systematic decomposition of the neutrinoless double beta decay operator

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We discuss the systematic decomposition of the dimension nine neutrinoless double beta decay operator, focusing on mechanisms with potentially small contributions to neutrino mass, while being accessible at the LHC. We first provide a (d = 9 tree-level) complete list of diagrams for neutrinoless double beta decay. From this list one can easily recover all previously discussed contributions to the neutrinoless double beta decay process, such as the celebrated mass mechanism or “exotics”, such as contributions from left-right symmetric models, R-parity violating supersymmetry and leptoquarks. More interestingly, however, we identify a number of new possibilities which have not been discussed in the literature previously. Contact to earlier works based on a general Lorentz-invariant parametrisation of the neutrinoless double beta decay rate is made, which allows, in principle, to derive limits on all possible contributions. We furthermore discuss possible signals at the LHC for mediators leading to the short-range part of the amplitude with one specific example. The study of such contributions would gain particular importance if there were a tension between different measurements of neutrino mass such as coming from neutrinoless double beta decay and cosmology or single beta decay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Avignone, Frank T., S.R. Elliott and J. Engel, Double β decay, Majorana neutrinos and neutrino mass, Rev. Mod. Phys. 80 (2008) 481 [arXiv:0708.1033] [INSPIRE].

    Article  ADS  Google Scholar 

  2. J. Gomez-Cadenas, J. Martin-Albo, M. Mezzetto, F. Monrabal and M. Sorel, The search for neutrinoless double β decay, Riv. Nuovo Cim. 35 (2012) 29 [arXiv:1109.5515] [INSPIRE].

    Google Scholar 

  3. W. Rodejohann, Neutrinoless double β decay and neutrino physics, J. Phys. G 39 (2012) 124008 [arXiv:1206.2560] [INSPIRE].

    Article  ADS  Google Scholar 

  4. A. Barabash, Double β decay experiments: beginning of a new era, arXiv:1209.4241 [INSPIRE].

  5. W. Rodejohann, Neutrino-less double β decay and particle physics, Int. J. Mod. Phys. E 20 (2011) 1833 [arXiv:1106.1334] [INSPIRE].

    Article  ADS  Google Scholar 

  6. F.F. Deppisch, M. Hirsch and H. Pas, Neutrinoless double β decay and physics beyond the standard model, J. Phys. G 39 (2012) 124007 [arXiv:1208.0727] [INSPIRE].

    Article  ADS  Google Scholar 

  7. J. Schechter and J. Valle, Neutrinoless double β decay in SU(2) × U(1) theories, Phys. Rev. D 25 (1982) 2951 [INSPIRE].

    ADS  Google Scholar 

  8. J.F. Nieves, Dirac and pseudo-Dirac neutrinos and neutrinoless double β decay, Phys. Lett. B 147 (1984) 375 [INSPIRE].

    Article  ADS  Google Scholar 

  9. E. Takasugi, Can the neutrinoless double β decay take place in the case of Dirac neutrinos?, Phys. Lett. B 149 (1984) 372 [INSPIRE].

    Article  ADS  Google Scholar 

  10. M. Hirsch, S. Kovalenko and I. Schmidt, Extended black box theorem for lepton number and flavor violating processes, Phys. Lett. B 642 (2006) 106 [hep-ph/0608207] [INSPIRE].

    Article  ADS  Google Scholar 

  11. M. Duerr, M. Lindner and A. Merle, On the quantitative impact of the Schechter-Valle theorem, JHEP 06 (2011) 091 [arXiv:1105.0901] [INSPIRE].

    Article  ADS  Google Scholar 

  12. H. Klapdor-Kleingrothaus et al., Latest results from the Heidelberg-Moscow double beta decay experiment, Eur. Phys. J. A 12 (2001) 147 [hep-ph/0103062] [INSPIRE].

    Article  ADS  Google Scholar 

  13. H. Klapdor-Kleingrothaus and I. Krivosheina, The evidence for the observation of 0νββ decay: the identification of 0nu beta beta events from the full spectra, Mod. Phys. Lett. A 21 (2006) 1547 [INSPIRE].

    Article  ADS  Google Scholar 

  14. EXO collaboration, M. Auger et al., Search for neutrinoless double-β decay in 136 Xe with EXO-200, Phys. Rev. Lett. 109 (2012) 032505 [arXiv:1205.5608] [INSPIRE].

    Article  ADS  Google Scholar 

  15. KamLAND-Zen collaboration, A. Gando et al., Limit on neutrinoless ββ decay of 136 Xe from the first phase of KamLAND-Zen and comparison with the positive claim in Ge-76, arXiv:1211.3863 [INSPIRE].

  16. KamLAND-Zen collaboration, A. Gando et al., Measurement of the double-β decay half-life of 136 Xe with the KamLAND-Zen experiment, Phys. Rev. C 85 (2012) 045504 [arXiv:1201.4664] [INSPIRE].

    ADS  Google Scholar 

  17. EXO-200 collaboration, R. MacLallen, Recontres de Moriond, http://moriond.in2p3.fr/ (2012).

  18. I. Abt et al., A new Ge-76 double β decay experiment at LNGS: letter of intent, hep-ex/0404039 [INSPIRE].

  19. Majorana collaboration, C. Aalseth et al., The Majorana experiment, Nucl. Phys. Proc. Suppl. 217 (2011) 44 [arXiv:1101.0119] [INSPIRE].

    Article  ADS  Google Scholar 

  20. A. Barabash, New generation of double β decay experiments: are there any limitations?, AIP Conf. Proc. 1417 (2011) 5 [arXiv:1109.6423] [INSPIRE].

    Article  ADS  Google Scholar 

  21. Super-Kamiokande collaboration, Y. Fukuda et al., Evidence for oscillation of atmospheric neutrinos, Phys. Rev. Lett. 81 (1998) 1562 [hep-ex/9807003] [INSPIRE].

    Article  ADS  Google Scholar 

  22. SNO collaboration, Q. Ahmad et al., Direct evidence for neutrino flavor transformation from neutral current interactions in the Sudbury Neutrino Observatory, Phys. Rev. Lett. 89 (2002) 011301 [nucl-ex/0204008] [INSPIRE].

    Article  ADS  Google Scholar 

  23. KamLAND collaboration, K. Eguchi et al., First results from KamLAND: evidence for reactor anti-neutrino disappearance, Phys. Rev. Lett. 90 (2003) 021802 [hep-ex/0212021] [INSPIRE].

    Article  ADS  Google Scholar 

  24. T2K collaboration, K. Abe et al., Indication of electron neutrino appearance from an accelerator-produced off-axis muon neutrino beam, Phys. Rev. Lett. 107 (2011) 041801 [arXiv:1106.2822] [INSPIRE].

    Article  ADS  Google Scholar 

  25. MINOS collaboration, P. Adamson et al., Improved search for muon-neutrino to electron-neutrino oscillations in MINOS, Phys. Rev. Lett. 107 (2011) 181802 [arXiv:1108.0015] [INSPIRE].

    Article  ADS  Google Scholar 

  26. DOUBLE-CHOOZ collaboration, Y. Abe et al., Indication for the disappearance of reactor electron antineutrinos in the Double CHOOZ experiment, Phys. Rev. Lett. 108 (2012) 131801 [arXiv:1112.6353] [INSPIRE].

    Article  ADS  Google Scholar 

  27. DAYA-BAY collaboration, F. An et al., Observation of electron-antineutrino disappearance at Daya Bay, Phys. Rev. Lett. 108 (2012) 171803 [arXiv:1203.1669] [INSPIRE].

    Article  ADS  Google Scholar 

  28. RENO collaboration, J. Ahn et al., Observation of reactor electron antineutrino disappearance in the RENO experiment, Phys. Rev. Lett. 108 (2012) 191802 [arXiv:1204.0626] [INSPIRE].

    Article  ADS  Google Scholar 

  29. A. Faessler, V. Rodin and F. Simkovic, Nuclear matrix elements for neutrinoless double-β decay and double-electron capture, J. Phys. G 39 (2012) 124006 [arXiv:1206.0464] [INSPIRE].

    Article  ADS  Google Scholar 

  30. J. Menendez, A. Poves, E. Caurier and F. Nowacki, Disassembling the nuclear matrix elements of the neutrinoless ββ decay, Nucl. Phys. A 818 (2009) 139 [arXiv:0801.3760] [INSPIRE].

    Article  ADS  Google Scholar 

  31. J. Menendez, A. Poves, E. Caurier and F. Nowacki, Neutrinoless double β decay: the nuclear matrix elements revisited, J. Phys. Conf. Ser. 312 (2011) 072005 [INSPIRE].

    Article  ADS  Google Scholar 

  32. D. Forero, M. Tortola and J. Valle, Global status of neutrino oscillation parameters after Neutrino-2012, Phys. Rev. D 86 (2012) 073012 [arXiv:1205.4018] [INSPIRE].

    ADS  Google Scholar 

  33. J. Lesgourgues and S. Pastor, Massive neutrinos and cosmology, Phys. Rept. 429 (2006) 307 [astro-ph/0603494] [INSPIRE].

    Article  ADS  Google Scholar 

  34. S. Hannestad, Neutrino physics from precision cosmology, Prog. Part. Nucl. Phys. 65 (2010) 185 [arXiv:1007.0658] [INSPIRE].

    Article  ADS  Google Scholar 

  35. Y.Y. Wong, Neutrino mass in cosmology: status and prospects, Ann. Rev. Nucl. Part. Sci. 61 (2011) 69 [arXiv:1111.1436] [INSPIRE].

    Article  ADS  Google Scholar 

  36. J. Bergstrom, A. Merle and T. Ohlsson, Constraining new physics with a positive or negative signal of neutrino-less double β decay, JHEP 05 (2011) 122 [arXiv:1103.3015] [INSPIRE].

    Article  ADS  Google Scholar 

  37. H. Pas, M. Hirsch, H. Klapdor-Kleingrothaus and S. Kovalenko, A superformula for neutrinoless double β decay. 2. The short range part, Phys. Lett. B 498 (2001) 35 [hep-ph/0008182] [INSPIRE].

    Article  ADS  Google Scholar 

  38. H. Pas, M. Hirsch, H. Klapdor-Kleingrothaus and S. Kovalenko, Towards a superformula for neutrinoless double β decay, Phys. Lett. B 453 (1999) 194 [INSPIRE].

    Article  ADS  Google Scholar 

  39. Riazuddin, R. Marshak and R.N. Mohapatra, Majorana neutrinos and low-energy tests of electroweak models, Phys. Rev. D 24 (1981) 1310 [INSPIRE].

    ADS  Google Scholar 

  40. T.G. Rizzo, Inverse neutrinoless double β decay, Phys. Lett. B 116 (1982) 23 [INSPIRE].

    Article  ADS  Google Scholar 

  41. W.-Y. Keung and G. Senjanović, Majorana neutrinos and the production of the right-handed charged gauge boson, Phys. Rev. Lett. 50 (1983) 1427 [INSPIRE].

    Article  ADS  Google Scholar 

  42. M. Hirsch, H. Klapdor-Kleingrothaus and O. Panella, Double β decay in left-right symmetric models, Phys. Lett. B 374 (1996) 7 [hep-ph/9602306] [INSPIRE].

    Article  ADS  Google Scholar 

  43. ATLAS collaboration, Search for heavy neutrinos and right-handed W bosons in events with two leptons and jets in pp collisions at \(\sqrt{s}=7\) TeV with the ATLAS detector, Eur. Phys. J. C 72 (2012) 2056 [arXiv:1203.5420] [INSPIRE].

    ADS  Google Scholar 

  44. CMS collaboration, Search for a heavy neutrino and right-handed W of the left-right symmetric model in pp collisions at 8 TeV, CMS-PAS-EXO-12-017 (2012).

  45. K. Babu and C.N. Leung, Classification of effective neutrino mass operators, Nucl. Phys. B 619 (2001) 667 [hep-ph/0106054] [INSPIRE].

    Article  ADS  Google Scholar 

  46. A. de Gouvêa and J. Jenkins, A survey of lepton number violation via effective operators, Phys. Rev. D 77 (2008) 013008 [arXiv:0708.1344] [INSPIRE].

    ADS  Google Scholar 

  47. F. del Aguila, A. Aparici, S. Bhattacharya, A. Santamaria and J. Wudka, Effective Lagrangian approach to neutrinoless double beta decay and neutrino masses, JHEP 06 (2012) 146 [arXiv:1204.5986] [INSPIRE].

    Article  ADS  Google Scholar 

  48. S. Weinberg, Baryon and lepton nonconserving processes, Phys. Rev. Lett. 43 (1979) 1566 [INSPIRE].

    Article  ADS  Google Scholar 

  49. H. Primakoff and P.S. Rosen, Baryon number and lepton number conservation laws, Ann. Rev. Nucl. Part. Sci. 31 (1981) 145 [INSPIRE].

    Article  ADS  Google Scholar 

  50. M. Doi, T. Kotani and E. Takasugi, Double β decay and Majorana neutrino, Prog. Theor. Phys. Suppl. 83 (1985) 1 [INSPIRE].

    Article  ADS  Google Scholar 

  51. J.H. Missimer, R. Mohapatra and N.C. Mukhopadhyay, A muonic analog of the nuclear double beta decay: A New window for the lepton number conservation, Phys. Rev. D 50 (1994) 2067 [INSPIRE].

    ADS  Google Scholar 

  52. E. Takasugi, The μ  + (Z, A) → μ + + (Z − 2, A) transition, Nucl. Instrum. Meth. A 503 (2003) 252 [INSPIRE].

    Article  ADS  Google Scholar 

  53. S. Kanemura, Y. Kuno and T. Ota, Search for lepton number violating charged current processes with neutrino beams, Phys. Lett. B 719 (2013) 373 [arXiv:1205.5681] [INSPIRE].

    Article  ADS  Google Scholar 

  54. M. Gavela, D. Hernandez, T. Ota and W. Winter, Large gauge invariant non-standard neutrino interactions, Phys. Rev. D 79 (2009) 013007 [arXiv:0809.3451] [INSPIRE].

    ADS  Google Scholar 

  55. F. Bonnet, D. Hernandez, T. Ota and W. Winter, Neutrino masses from higher than D = 5 effective operators, JHEP 10 (2009) 076 [arXiv:0907.3143] [INSPIRE].

    Article  ADS  Google Scholar 

  56. F. Bonnet, M. Gavela, T. Ota and W. Winter, Anomalous Higgs couplings at the LHC and their theoretical interpretation, Phys. Rev. D 85 (2012) 035016 [arXiv:1105.5140] [INSPIRE].

    ADS  Google Scholar 

  57. F. Bonnet, M. Hirsch, T. Ota and W. Winter, Systematic study of the D = 5 Weinberg operator at one-loop order, JHEP 07 (2012) 153 [arXiv:1204.5862] [INSPIRE].

    Article  ADS  Google Scholar 

  58. R. Mohapatra, New contributions to neutrinoless double β decay in supersymmetric theories, Phys. Rev. D 34 (1986) 3457 [INSPIRE].

    ADS  Google Scholar 

  59. M. Hirsch, H. Klapdor-Kleingrothaus and S. Kovalenko, New constraints on R-parity broken supersymmetry from neutrinoless double β decay, Phys. Rev. Lett. 75 (1995) 17 [INSPIRE].

    Article  ADS  Google Scholar 

  60. M. Hirsch, H. Klapdor-Kleingrothaus and S. Kovalenko, Supersymmetry and neutrinoless double β decay, Phys. Rev. D 53 (1996) 1329 [hep-ph/9502385] [INSPIRE].

    ADS  Google Scholar 

  61. S. Goswami and W. Rodejohann, Constraining mass spectra with sterile neutrinos from neutrinoless double β decay, tritium β decay and cosmology, Phys. Rev. D 73 (2006) 113003 [hep-ph/0512234] [INSPIRE].

    ADS  Google Scholar 

  62. M. Blennow, E. Fernandez-Martinez, J. Lopez-Pavon and J. Menendez, Neutrinoless double β decay in seesaw models, JHEP 07 (2010) 096 [arXiv:1005.3240] [INSPIRE].

    Article  ADS  Google Scholar 

  63. A. Ibarra, E. Molinaro and S. Petcov, TeV scale see-saw mechanisms of neutrino mass generation, the Majorana nature of the heavy singlet neutrinos and (ββ)0ν -decay, JHEP 09 (2010) 108 [arXiv:1007.2378] [INSPIRE].

    Article  ADS  Google Scholar 

  64. S. Choubey, M. Duerr, M. Mitra and W. Rodejohann, Lepton number and lepton flavor violation through color octet states, JHEP 05 (2012) 017 [arXiv:1201.3031] [INSPIRE].

    Article  ADS  Google Scholar 

  65. M. Hirsch, H. Klapdor-Kleingrothaus and S. Kovalenko, New low-energy leptoquark interactions, Phys. Lett. B 378 (1996) 17 [hep-ph/9602305] [INSPIRE].

    Article  ADS  Google Scholar 

  66. M. Hirsch, H. Klapdor-Kleingrothaus and S. Kovalenko, New leptoquark mechanism of neutrinoless double β decay, Phys. Rev. D 54 (1996) 4207 [hep-ph/9603213] [INSPIRE].

    ADS  Google Scholar 

  67. F. Cuypers and S. Davidson, Bileptons: present limits and future prospects, Eur. Phys. J. C 2 (1998) 503 [hep-ph/9609487] [INSPIRE].

    Article  ADS  Google Scholar 

  68. W. Buchmüller, R. Ruckl and D. Wyler, Leptoquarks in lepton-quark collisions, Phys. Lett. B 191 (1987) 442 [Erratum ibid. B 448 (1999) 320] [INSPIRE].

    Article  ADS  Google Scholar 

  69. R.N. Mohapatra and J. Vergados, A new contribution to neutrinoless double β decay in gauge models, Phys. Rev. Lett. 47 (1981) 1713 [INSPIRE].

    Article  ADS  Google Scholar 

  70. P.-H. Gu, Significant neutrinoless double β decay with quasi-Dirac neutrinos, Phys. Rev. D 85 (2012) 093016 [arXiv:1101.5106] [INSPIRE].

    ADS  Google Scholar 

  71. M. Kohda, H. Sugiyama and K. Tsumura, Lepton number violation at the LHC with leptoquark and diquark, Phys. Lett. B 718 (2013) 1436 [arXiv:1210.5622] [INSPIRE].

    Article  ADS  Google Scholar 

  72. L. Wolfenstein, Triplet scalar bosons and double β decay, Phys. Rev. D 26 (1982) 2507 [INSPIRE].

    ADS  Google Scholar 

  73. W. Haxton, S.P. Rosen and G. Stephenson, Higgs boson exchange contributions to neutrinoless double β decay, Phys. Rev. D 26 (1982) 1805 [INSPIRE].

    ADS  Google Scholar 

  74. B. Allanach, C. Kom and H. Pas, Large Hadron Collider probe of supersymmetric neutrinoless double β decay mechanism, Phys. Rev. Lett. 103 (2009) 091801 [arXiv:0902.4697] [INSPIRE].

    Article  ADS  Google Scholar 

  75. T. Han, I. Lewis and Z. Liu, Colored resonant signals at the LHC: largest rate and simplest topology, JHEP 12 (2010) 085 [arXiv:1010.4309] [INSPIRE].

    Article  ADS  Google Scholar 

  76. CMS collaboration, Search for resonances in the dijet mass spectrum from 7 TeV pp collisions at CMS, Phys. Lett. B 704 (2011) 123 [arXiv:1107.4771] [INSPIRE].

    ADS  Google Scholar 

  77. ATLAS collaboration, ATLAS search for new phenomena in dijet mass and angular distributions using pp collisions at \(\sqrt{s}=7\) TeV, JHEP 01 (2013) 029 [arXiv:1210.1718] [INSPIRE].

    ADS  Google Scholar 

  78. ATLAS collaboration, Search for new phenomena in the dijet mass distribution using 5.8 fb −1 of pp collisions at \(\sqrt{s}=8\) TeV collected by the ATLAS detector, ATLAS-CONF-2012-088 (2012).

  79. I. Dorsner, S. Fajfer, J.F. Kamenik and N. Kosnik, Light colored scalars from grand unification and the forward-backward asymmetry in \(t\overline{t}\) production, Phys. Rev. D 81 (2010) 055009 [arXiv:0912.0972] [INSPIRE].

    ADS  Google Scholar 

  80. I. Dorsner, J. Drobnak, S. Fajfer, J.F. Kamenik and N. Kosnik, Limits on scalar leptoquark interactions and consequences for GUTs, JHEP 11 (2011) 002 [arXiv:1107.5393] [INSPIRE].

    Article  ADS  Google Scholar 

  81. N. Kosnik, I. Dorsner, J. Drobnak, S. Fajfer and J.F. Kamenik, Scalar diquark in tt production and constraints on Yukawa sector of grand unified theories, PoS(EPS-HEP2011)380 [arXiv:1111.0477] [INSPIRE].

  82. ATLAS collaboration, Search for resonant top plus jet production in \(t\overline{t}\) + jets events with the ATLAS detector in pp collisions at \(\sqrt{s}=7\) TeV, Phys. Rev. D 86 (2012) 091103 [arXiv:1209.6593] [INSPIRE].

    ADS  Google Scholar 

  83. G. Cacciapaglia, A. Deandrea, D. Harada and Y. Okada, Bounds and decays of new heavy vector-like top partners, JHEP 11 (2010) 159 [arXiv:1007.2933] [INSPIRE].

    Article  ADS  Google Scholar 

  84. G. Cacciapaglia et al., Heavy vector-like top partners at the LHC and flavour constraints, JHEP 03 (2012) 070 [arXiv:1108.6329] [INSPIRE].

    Article  ADS  Google Scholar 

  85. Y. Okada and L. Panizzi, LHC signatures of vector-like quarks, arXiv:1207.5607 [INSPIRE].

  86. G. Cacciapaglia, A. Deandrea, S. Perries, V. Sordini and L. Panizzi, Heavy vector-like quark with charge 5/3 at the LHC, arXiv:1211.4034 [INSPIRE].

  87. A. Azatov et al., Higgs boson production via vector-like top-partner decays: diphoton or multilepton plus multijets channels at the LHC, Phys. Rev. D 85 (2012) 115022 [arXiv:1204.0455] [INSPIRE].

    ADS  Google Scholar 

  88. N. Bonne and G. Moreau, Reproducing the Higgs boson data with vector-like quarks, Phys. Lett. B 717 (2012) 409 [arXiv:1206.3360] [INSPIRE].

    Article  ADS  Google Scholar 

  89. B. Batell, S. Gori and L.-T. Wang, Higgs couplings and precision electroweak data, JHEP 01 (2013) 139 [arXiv:1209.6382] [INSPIRE].

    Article  ADS  Google Scholar 

  90. E. Bertuzzo, P.A. Machado and R. Zukanovich Funchal, Can new colored particles illuminate the Higgs?, JHEP 02 (2013) 086 [arXiv:1209.6359] [INSPIRE].

    Article  ADS  Google Scholar 

  91. D. McKeen, M. Pospelov and A. Ritz, Modified Higgs branching ratios versus CP and lepton flavor violation, Phys. Rev. D 86 (2012) 113004 [arXiv:1208.4597] [INSPIRE].

    ADS  Google Scholar 

  92. K.J. Bae, T.H. Jung and H.D. Kim, 125 GeV Higgs as a pseudo-Goldstone boson in supersymmetry with vector-like matters, Phys. Rev. D 87 (2013) 015014 [arXiv:1208.3748] [INSPIRE].

    ADS  Google Scholar 

  93. H. Davoudiasl, H.-S. Lee and W.J. Marciano, Dark side of Higgs diphoton decays and muon g − 2, Phys. Rev. D 86 (2012) 095009 [arXiv:1208.2973] [INSPIRE].

    ADS  Google Scholar 

  94. B. Batell, D. McKeen and M. Pospelov, Singlet neighbors of the Higgs boson, JHEP 10 (2012) 104 [arXiv:1207.6252] [INSPIRE].

    Article  ADS  Google Scholar 

  95. H. An, T. Liu and L.-T. Wang, 125 GeV Higgs boson, enhanced di-photon rate and gauged U(1) P Q -extended MSSM, Phys. Rev. D 86 (2012) 075030 [arXiv:1207.2473] [INSPIRE].

    ADS  Google Scholar 

  96. S.P. Martin and J.D. Wells, Implications of gauge-mediated supersymmetry breaking with vector-like quarks and a ~ 125 GeV Higgs boson, Phys. Rev. D 86 (2012) 035017 [arXiv:1206.2956] [INSPIRE].

    ADS  Google Scholar 

  97. L. Wang and X.-F. Han, The recent Higgs boson data and Higgs triplet model with vector-like quark, Phys. Rev. D 86 (2012) 095007 [arXiv:1206.1673] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  98. S. Iwamoto, Muon g − 2 anomaly and 125 GeV Higgs: extra vector-like quark and LHC prospects, AIP Conf. Proc. 1467 (2012) 57 [arXiv:1206.0161] [INSPIRE].

    Article  ADS  Google Scholar 

  99. M. Endo, K. Hamaguchi, S. Iwamoto and N. Yokozaki, Higgs mass, muon g − 2 and LHC prospects in gauge mediation models with vector-like matters, Phys. Rev. D 85 (2012) 095012 [arXiv:1112.5653] [INSPIRE].

    ADS  Google Scholar 

  100. ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  101. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  102. ATLAS collaboration, Search for first generation scalar leptoquarks in pp collisions at \(\sqrt{s}=7\) TeV with the ATLAS detector, Phys. Lett. B 709 (2012) 158 [Erratum ibid. 711 (2012) 442-455] [arXiv:1112.4828] [INSPIRE].

    ADS  Google Scholar 

  103. ZEUS collaboration, H. Abramowicz et al., Search for first-generation leptoquarks at HERA, Phys. Rev. D 86 (2012) 012005 [arXiv:1205.5179] [INSPIRE].

    ADS  Google Scholar 

  104. KATRIN collaboration, A. Osipowicz et al., KATRIN: A Next generation tritium β decay experiment with sub-eV sensitivity for the electron neutrino mass. Letter of intent, hep-ex/0109033 [INSPIRE].

  105. H.K. Dreiner, H.E. Haber and S.P. Martin, Two-component spinor techniques and Feynman rules for quantum field theory and supersymmetry, Phys. Rept. 494 (2010) 1 [arXiv:0812.1594] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshihiko Ota.

Additional information

ArXiv ePrint: 1212.3045

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonnet, F., Hirsch, M., Ota, T. et al. Systematic decomposition of the neutrinoless double beta decay operator. J. High Energ. Phys. 2013, 55 (2013). https://doi.org/10.1007/JHEP03(2013)055

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2013)055

Keywords

Navigation