Skip to main content
Log in

The new flavor of Higgsed gauge mediation

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Recent LHC bounds on squark masses combined with naturalness and flavor considerations motivate non-trivial sfermion mass spectra in the supersymmetric Standard Model. These can arise if supersymmetry breaking is communicated to the visible sector via new extended gauge symmetries. Such extended symmetries must be spontaneously broken, or confined, complicating the calculation of soft masses. We develop a new formalism for calculating perturbative gauge-mediated two-loop soft masses for gauge groups with arbitrary patterns of spontaneous symmetry breaking, simplifying the framework of “Higgsed gauge mediation.” The resulting expressions can be applied to Abelian and non-Abelian gauge groups, opening new avenues for supersymmetric model building. We present a number of examples using our method, ranging from grand unified threshold corrections in standard gauge mediation to soft masses in gauge extensions of the Higgs sector that can raise the Higgs mass through non-decoupling D-terms. We also outline a new mediation mechanism called “flavor mediation”, where supersymmetry breaking is communicated via a gauged subgroup of Standard Model flavor symmetries. Flavor mediation can automatically generate suppressed masses for third-generation squarks and implies a nearly exact U(2) symmetry in the first two generations, yielding a “natural SUSY” spectrum without imposing ad hoc global symmetries or giving preferential treatment to particular generations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Giudice and R. Rattazzi, Theories with gauge mediated supersymmetry breaking, Phys. Rept. 322 (1999) 419 [hep-ph/9801271] [INSPIRE].

    Article  ADS  Google Scholar 

  2. P. Meade, N. Seiberg and D. Shih, General gauge mediation, Prog. Theor. Phys. Suppl. 177 (2009)143 [arXiv:0801.3278] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  3. M. Dine, R.G. Leigh and A. Kagan, Flavor symmetries and the problem of squark degeneracy, Phys. Rev. D 48 (1993) 4269 [hep-ph/9304299] [INSPIRE].

    ADS  Google Scholar 

  4. P. Pouliot and N. Seiberg, (S)quark masses and nonAbelian horizontal symmetries, Phys. Lett. B 318 (1993) 169 [hep-ph/9308363] [INSPIRE].

    ADS  Google Scholar 

  5. R. Barbieri, L.J. Hall and A. Strumia, Hadronic flavor and CP-violating signals of superunification, Nucl. Phys. B 449 (1995) 437 [hep-ph/9504373] [INSPIRE].

    Article  ADS  Google Scholar 

  6. S. Dimopoulos and G. Giudice, Naturalness constraints in supersymmetric theories with nonuniversal soft terms, Phys. Lett. B 357 (1995) 573 [hep-ph/9507282] [INSPIRE].

    ADS  Google Scholar 

  7. A. Pomarol and D. Tommasini, Horizontal symmetries for the supersymmetric flavor problem, Nucl. Phys. B 466 (1996) 3 [hep-ph/9507462] [INSPIRE].

    Article  ADS  Google Scholar 

  8. R. Barbieri, G. Dvali and L.J. Hall, Predictions from a U(2) flavor symmetry in supersymmetric theories, Phys. Lett. B 377 (1996) 76 [hep-ph/9512388] [INSPIRE].

    ADS  Google Scholar 

  9. A.G. Cohen, D. Kaplan and A. Nelson, The more minimal supersymmetric standard model, Phys. Lett. B 388 (1996) 588 [hep-ph/9607394] [INSPIRE].

    ADS  Google Scholar 

  10. R. Barbieri, L.J. Hall and A. Romanino, Consequences of a U(2) flavor symmetry, Phys. Lett. B 401 (1997) 47 [hep-ph/9702315] [INSPIRE].

    ADS  Google Scholar 

  11. M. Gabella, T. Gherghetta and J. Giedt, A gravity dual and LHC study of single-sector supersymmetry breaking, Phys. Rev. D 76 (2007) 055001 [arXiv:0704.3571] [INSPIRE].

    ADS  Google Scholar 

  12. R. Sundrum, SUSY splits, but then returns, JHEP 01 (2011) 062 [arXiv:0909.5430] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. R. Barbieri, E. Bertuzzo, M. Farina, P. Lodone and D. Pappadopulo, A non standard supersymmetric spectrum, JHEP 08 (2010) 024 [arXiv:1004.2256] [INSPIRE].

    Article  ADS  Google Scholar 

  14. R. Barbieri, E. Bertuzzo, M. Farina, P. Lodone and D. Zhuridov, Minimal flavour violation with hierarchical squark masses, JHEP 12 (2010) 070 [Erratum ibid. 1102 (2011) 044] [arXiv:1011.0730] [INSPIRE].

    Article  ADS  Google Scholar 

  15. N. Craig, D. Green and A. Katz, (De)constructing a natural and flavorful supersymmetric standard model, JHEP 07 (2011) 045 [arXiv:1103.3708] [INSPIRE].

    Article  ADS  Google Scholar 

  16. T. Gherghetta, B. von Harling and N. Setzer, A natural little hierarchy for RS from accidental SUSY, JHEP 07 (2011) 011 [arXiv:1104.3171] [INSPIRE].

    Article  ADS  Google Scholar 

  17. Y. Kats, P. Meade, M. Reece and D. Shih, The status of GMSB After 1/fb at the LHC, JHEP 02 (2012) 115 [arXiv:1110.6444] [INSPIRE].

    Article  ADS  Google Scholar 

  18. M. Papucci, J.T. Ruderman and A. Weiler, Natural SUSY endures, arXiv:1110.6926 [INSPIRE].

  19. C. Brust, A. Katz, S. Lawrence and R. Sundrum, SUSY, the third generation and the LHC, arXiv:1110.6670 [INSPIRE].

  20. A. Delgado and M. Quirós, The least supersymmetric standard model, Phys. Rev. D 85 (2012) 015001 [arXiv:1111.0528] [INSPIRE].

    ADS  Google Scholar 

  21. N. Desai and B. Mukhopadhyaya, Constraints on supersymmetry with light third family from LHC data, arXiv:1111.2830 [INSPIRE].

  22. S. Akula, M. Liu, P. Nath and G. Peim, Naturalness, supersymmetry and implications for LHC and dark matter, Phys. Lett. B 709 (2012) 192 [arXiv:1111.4589] [INSPIRE].

    ADS  Google Scholar 

  23. M. Ajaib, T. Li and Q. Shafi, Stop-neutralino coannihilation in the light of LHC, arXiv:1111.4467 [INSPIRE].

  24. K. Ishiwata, N. Nagata and N. Yokozaki, Natural supersymmetry and bsγ constraints, arXiv:1112.1944 [INSPIRE].

  25. P. Lodone, A motivated non-standard supersymmetric spectrum, arXiv:1112.2178 [INSPIRE].

  26. B. He, T. Li and Q. Shafi, Impact of LHC Searches on Light Top Squark, arXiv:1112.4461 [INSPIRE].

  27. A. Arvanitaki and G. Villadoro, A non standard model Higgs at the LHC as a sign of naturalness, arXiv:1112.4835 [INSPIRE].

  28. R. Auzzi, A. Giveon and S.B. Gudnason, Flavor of quiver-like realizations of effective supersymmetry, JHEP 02 (2012) 069 [arXiv:1112.6261] [INSPIRE].

    Article  ADS  Google Scholar 

  29. C. Csáki, L. Randall and J. Terning, Light stops from Seiberg duality, arXiv:1201.1293 [INSPIRE].

  30. E. Gorbatov and M. Sudano, Sparticle masses in Higgsed gauge mediation, JHEP 10 (2008) 066 [arXiv:0802.0555] [INSPIRE].

    Article  ADS  Google Scholar 

  31. H.-C. Cheng, B.A. Dobrescu and K.T. Matchev, A chiral supersymmetric standard model, Phys. Lett. B 439 (1998) 301 [hep-ph/9807246] [INSPIRE].

    Article  ADS  Google Scholar 

  32. H.-C. Cheng, B.A. Dobrescu and K.T. Matchev, Generic and chiral extensions of the supersymmetric standard model, Nucl. Phys. B 543 (1999) 47 [hep-ph/9811316] [INSPIRE].

    Article  ADS  Google Scholar 

  33. D. Kaplan, F. Lepeintre, A. Masiero, A.E. Nelson and A. Riotto, Fermion masses and gauge mediated supersymmetry breaking from a single U(1), Phys. Rev. D 60 (1999) 055003 [hep-ph/9806430] [INSPIRE].

    ADS  Google Scholar 

  34. D. Kaplan and G.D. Kribs, Phenomenology of flavor mediated supersymmetry breaking, Phys. Rev. D 61 (2000) 075011 [hep-ph/9906341] [INSPIRE].

    ADS  Google Scholar 

  35. L.L. Everett, P. Langacker, M. Plümacher and J. Wang, Alternative supersymmetric spectra, Phys. Lett. B 477 (2000) 233 [hep-ph/0001073] [INSPIRE].

    ADS  Google Scholar 

  36. R. Dermisek, H.D. Kim and I.-W. Kim, Mediation of supersymmetry breaking in gauge messenger models, JHEP 10 (2006) 001 [hep-ph/0607169] [INSPIRE].

    Article  ADS  Google Scholar 

  37. P. Langacker, G. Paz, L.-T. Wang and I. Yavin, Z-mediated supersymmetry breaking, Phys. Rev. Lett. 100 (2008) 041802 [arXiv:0710.1632] [INSPIRE].

    Article  ADS  Google Scholar 

  38. P. Langacker, The physics of heavy Z gauge bosons, Rev. Mod. Phys. 81 (2009) 1199 [arXiv:0801.1345] [INSPIRE].

    Article  ADS  Google Scholar 

  39. M. Buican and Z. Komargodski, Soft terms from broken symmetries, JHEP 02 (2010) 005 [arXiv:0909.4824] [INSPIRE].

    Article  ADS  Google Scholar 

  40. K. Intriligator and M. Sudano, General gauge mediation with gauge messengers, JHEP 06 (2010)047 [arXiv:1001.5443] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  41. N. Craig, D. Stolarski and J. Thaler, A fat Higgs with a magnetic personality, JHEP 11 (2011) 145 [arXiv:1106.2164] [INSPIRE].

    Article  ADS  Google Scholar 

  42. R. Auzzi and A. Giveon, The sparticle spectrum in minimal gaugino-gauge mediation, JHEP 10 (2010) 088 [arXiv:1009.1714] [INSPIRE].

    Article  ADS  Google Scholar 

  43. R. Auzzi and A. Giveon, Superpartner spectrum of minimal gaugino-gauge mediation, JHEP 01 (2011) 003 [arXiv:1011.1664] [INSPIRE].

    Article  ADS  Google Scholar 

  44. R. Auzzi, A. Giveon, S.B. Gudnason and T. Shacham, On the spectrum of direct gaugino mediation, JHEP 09 (2011) 108 [arXiv:1107.1414] [INSPIRE].

    Article  ADS  Google Scholar 

  45. R. Auzzi, A. Giveon and S.B. Gudnason, Mediation of supersymmetry breaking in quivers, JHEP 12 (2011) 016 [arXiv:1110.1453] [INSPIRE].

    Article  ADS  Google Scholar 

  46. ATLAS collaboration, Combination of Higgs boson searches with up to 4.9 fb 1 of pp collisions data taken at a center-of-mass energy of 7 TeV with the ATLAS experiment at the LHC, Technical Report ATLAS-CONF-2011-163, CERN, Geneva Switzerland (2011).

    Google Scholar 

  47. CMS collaboration, Combination of SM Higgs searches, Technical Report PAS-HIG-11-032, CERN, Geneva Switzerland (2011).

    Google Scholar 

  48. P. Batra, A. Delgado, D.E. Kaplan and T.M. Tait, The Higgs mass bound in gauge extensions of the minimal supersymmetric standard model, JHEP 02 (2004) 043 [hep-ph/0309149] [INSPIRE].

    Article  ADS  Google Scholar 

  49. A. Maloney, A. Pierce and J.G. Wacker, D-terms, unification and the Higgs mass, JHEP 06 (2006) 034 [hep-ph/0409127] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  50. G. Giudice and R. Rattazzi, Extracting supersymmetry breaking effects from wave function renormalization, Nucl. Phys. B 511 (1998) 25 [hep-ph/9706540] [INSPIRE].

    Article  ADS  Google Scholar 

  51. N. Arkani-Hamed, G.F. Giudice, M.A. Luty and R. Rattazzi, Supersymmetry breaking loops from analytic continuation into superspace, Phys. Rev. D 58 (1998) 115005 [hep-ph/9803290] [INSPIRE].

    ADS  Google Scholar 

  52. M.T. Grisaru, M. Roček and R. von Unge, Effective Kähler potentials, Phys. Lett. B 383 (1996) 415 [hep-th/9605149] [INSPIRE].

    ADS  Google Scholar 

  53. S. Nibbelink Groot and T.S. Nyawelo, Two loop effective Kähler potential of (non-)renormalizable supersymmetric models, JHEP 01 (2006) 034 [hep-th/0511004] [INSPIRE].

    Article  ADS  Google Scholar 

  54. C. Ford and D. Jones, The effective potential and the differential equations method for Feynman integrals, Phys. Lett. B 274 (1992) 409 [Erratum ibid. B 285 (1992) 399] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  55. H. Georgi and S. Glashow, Unity of all elementary particle forces, Phys. Rev. Lett. 32 (1974) 438 [INSPIRE].

    Article  ADS  Google Scholar 

  56. C. Cheung, Y. Nomura and J. Thaler, Goldstini, JHEP 03 (2010) 073 [arXiv:1002.1967] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  57. M.A. Luty, Weak scale supersymmetry without weak scale supergravity, Phys. Rev. Lett. 89 (2002) 141801 [hep-th/0205077] [INSPIRE].

    Article  ADS  Google Scholar 

  58. N.J. Craig and D.R. Green, Sequestering the gravitino: neutralino dark matter in gauge mediation, Phys. Rev. D 79 (2009) 065030 [arXiv:0808.1097] [INSPIRE].

    ADS  Google Scholar 

  59. C. Csáki, G.D. Kribs and J. Terning, 4 − D models of Scherk-Schwarz GUT breaking via deconstruction, Phys. Rev. D 65 (2002) 015004 [hep-ph/0107266] [INSPIRE].

    ADS  Google Scholar 

  60. M. Dine, N. Seiberg and S. Thomas, Higgs physics as a window beyond the MSSM (BMSSM), Phys. Rev. D 76 (2007) 095004 [arXiv:0707.0005] [INSPIRE].

    ADS  Google Scholar 

  61. B. Grinstein, M. Redi and G. Villadoro, Low scale flavor gauge symmetries, JHEP 11 (2010) 067 [arXiv:1009.2049] [INSPIRE].

    Article  ADS  Google Scholar 

  62. P. Draper, P. Meade, M. Reece and D. Shih, Implications of a 125 GeV Higgs for the MSSM and low-scale SUSY breaking, arXiv:1112.3068 [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew McCullough.

Additional information

ArXiv ePrint: 1201.2179

Rights and permissions

Reprints and permissions

About this article

Cite this article

Craig, N., McCullough, M. & Thaler, J. The new flavor of Higgsed gauge mediation. J. High Energ. Phys. 2012, 49 (2012). https://doi.org/10.1007/JHEP03(2012)049

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2012)049

Keywords

Navigation