Skip to main content
Log in

Constraints from LFV processes in the Higgs triplet model

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Constraints from lepton flavor violating processes are translated into lower bounds on \( {v_\Delta }{m_{{H^{ \pm \pm }}}} \) in the Higgs Triplet Model by considering correlations through the neutrino mass matrix. It is shown that μeγ, rare τ decays (especially, \( \tau \to \bar \mu ee \)), and the muonium conversion can give a more stringent bound on \( {v_\Delta }{m_{{H^{ \pm \pm }}}} \) in some parameter regions than the bound from \( \mu \to \bar eee \) which is expected naively to give the most stringent one. We consider the cases of suppressed \( \mu \to \bar eee \) not only for CP-conserving sets of phases but also for arbitrary values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Konetschny and W. Kummer, Nonconservation of Total Lepton Number with Scalar Bosons, Phys. Lett. B 70 (1977) 433 [SPIRES].

    ADS  Google Scholar 

  2. T.P. Cheng and L.-F. Li, Neutrino Masses, Mixings and Oscillations in SU(2) × U(1) Models of Electroweak Interactions, Phys. Rev. D 22 (1980) 2860 [SPIRES].

    ADS  Google Scholar 

  3. J. Schechter and J.W.F. Valle, Neutrino Masses in SU(2) × U(1) Theories, Phys. Rev. D 22 (1980) 2227 [SPIRES].

    ADS  Google Scholar 

  4. Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett. B 667 (2008) 1 [SPIRES].

    ADS  Google Scholar 

  5. S.M. Bilenky, J. Hosek and S.T. Petcov, On Oscillations of Neutrinos with Dirac and Majorana Masses, Phys. Lett. B 94 (1980) 495 [SPIRES].

    ADS  Google Scholar 

  6. M. Doi, T. Kotani, H. Nishiura, K. Okuda and E. Takasugi, CP Violation in Majorana Neutrinos, Phys. Lett. B 102 (1981) 323 [SPIRES].

    ADS  Google Scholar 

  7. Z. Maki, M. Nakagawa and S. Sakata, Remarks on the unified model of elementary particles, Prog. Theor. Phys. 28 (1962) 870 [SPIRES].

    Article  MATH  ADS  Google Scholar 

  8. A.G. Akeroyd, M. Aoki and H. Sugiyama, Lepton Flavour Violating Decays τlll and μeγ in the Higgs Triplet Model, Phys. Rev. D 79 (2009) 113010 [arXiv:0904.3640] [SPIRES].

    ADS  Google Scholar 

  9. B.T. Cleveland et al., Measurement of the solar electron neutrino flux with the Homestake chlorine detector, Astrophys. J. 496 (1998) 505 [SPIRES].

    Article  ADS  Google Scholar 

  10. Gallex collaboration, W. Hampel et al., Gallex solar neutrino observations: Results for Gallex IV, Phys. Lett. B 447 (1999) 127 [SPIRES].

    ADS  Google Scholar 

  11. Sage collaboration, J.N. Abdurashitov et al., Measurement of the solar neutrino capture rate by the Russian-American gallium solar neutrino experiment during one half of the 22-year cycle of solar activity, J. Exp. Theor. Phys. 95 (2002) 181 [astro-ph/0204245] [SPIRES].

    Article  ADS  Google Scholar 

  12. Super-Kamkiokande collaboration, J. Hosaka et al., Solar neutrino measurements in Super-Kamiokande-I, Phys. Rev. D 73 (2006) 112001 [hep-ex/0508053] [SPIRES].

    ADS  Google Scholar 

  13. Sno collaboration, B. Aharmim et al., An Independent Measurement of the Total Active 8B Solar Neutrino Flux Using an Array of 3He Proportional Counters at the Sudbury Neutrino Observatory, Phys. Rev. Lett. 101 (2008) 111301 [arXiv:0806.0989] [SPIRES].

    Article  ADS  Google Scholar 

  14. The Borexino collaboration, C. Arpesella et al., Direct Measurement of the Be-7 Solar Neutrino Flux with 192 Days of Borexino Data, Phys. Rev. Lett. 101 (2008) 091302 [arXiv:0805.3843] [SPIRES].

    Article  ADS  Google Scholar 

  15. Super-Kamiokande collaboration, Y. Ashie et al., A Measurement of Atmospheric Neutrino Oscillation Parameters by Super-Kamiokande I, Phys. Rev. D 71 (2005) 112005 [hep-ex/0501064] [SPIRES].

    ADS  Google Scholar 

  16. Super-Kamiokande collaboration, J.L. Raaf, Solar and atmospheric neutrinos in Super-Kamiokande, J. Phys. Conf. Ser. 136 (2008) 022013 [SPIRES].

    Article  ADS  Google Scholar 

  17. K2k collaboration, M.H. Ahn et al., Measurement of Neutrino Oscillation by the K2K Experiment, Phys. Rev. D 74 (2006) 072003 [hep-ex/0606032] [SPIRES].

    ADS  Google Scholar 

  18. Minos collaboration, P. Adamson et al., Measurement of Neutrino Oscillations with the Minos Detectors in the NuMI Beam, Phys. Rev. Lett. 101 (2008) 131802 [arXiv:0806.2237] [SPIRES].

    Article  ADS  Google Scholar 

  19. Chooz collaboration, M. Apollonio et al., Search for neutrino oscillations on a long base-line at the Chooz nuclear power station, Eur. Phys. J. C 27 (2003) 331 [hep-ex/0301017] [SPIRES].

    ADS  Google Scholar 

  20. C. Kraus et al., Final Results from phase II of the Mainz Neutrino Mass Search in Tritium β Decay, Eur. Phys. J. C 40 (2005) 447 [hep-ex/0412056] [SPIRES].

    Article  ADS  Google Scholar 

  21. Wmap collaboration, E. Komatsu et al., Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation, Astrophys. J. Suppl. 180 (2009) 330 [arXiv:0803.0547] [SPIRES].

    Article  ADS  Google Scholar 

  22. Wmap collaboration, J. Dunkley et al., Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Likelihoods and Parameters from the WMAP data, Astrophys. J. Suppl. 180 (2009) 306 [arXiv:0803.0586] [SPIRES].

    Article  ADS  Google Scholar 

  23. Cdf collaboration, D.E. Acosta et al., Search for doubly-charged Higgs bosons decaying to dileptons in \( p\bar p \) collisions at \( \sqrt s = 1.96\;TeV \), Phys. Rev. Lett. 93 (2004) 221802 [hep-ex/0406073] [SPIRES].

    Article  ADS  Google Scholar 

  24. D0 collaboration, V.M. Abazov et al., Search for doubly-charged Higgs boson pair production in the decay to μ + μ + μ μ in \( p\bar p \) collisions at \( \sqrt s = 1.96\;TeV \), Phys. Rev. Lett. 93 (2004) 141801 [hep-ex/0404015] [SPIRES].

    Article  ADS  Google Scholar 

  25. D0 collaboration, V.M. Abazov et al., Search for pair production of doubly-charged Higgs bosons in the H ++ H −−μ + μ + μ μ final state at D0, Phys. Rev. Lett. 101 (2008) 071803 [arXiv:0803.1534] [SPIRES].

    Article  ADS  Google Scholar 

  26. Cdf collaboration, T. Aaltonen et al., Search for Doubly Charged Higgs Bosons with Lepton-Flavor-Violating Decays involving τ Leptons, Phys. Rev. Lett. 101 (2008) 121801 [arXiv:0808.2161] [SPIRES].

    Article  ADS  Google Scholar 

  27. J. Garayoa and T. Schwetz, Neutrino mass hierarchy and Majorana CP phases within the Higgs triplet model at the LHC, JHEP 03 (2008) 009 [arXiv:0712.1453] [SPIRES].

    Article  ADS  Google Scholar 

  28. A.G. Akeroyd, M. Aoki and H. Sugiyama, Probing Majorana Phases and Neutrino Mass Spectrum in the Higgs Triplet Model at the LHC, Phys. Rev. D 77 (2008) 075010 [arXiv:0712.4019] [SPIRES].

    ADS  Google Scholar 

  29. M. Kadastik, M. Raidal and L. Rebane, Direct determination of neutrino mass parameters at future colliders, Phys. Rev. D 77 (2008) 115023 [arXiv:0712.3912] [SPIRES].

    ADS  Google Scholar 

  30. P. Fileviez Perez, T. Han, G.-Y. Huang, T. Li and K. Wang, Neutrino Masses and the LHC: Testing Type II Seesaw, Phys. Rev. D 78 (2008) 015018 [arXiv:0805.3536] [SPIRES].

    ADS  Google Scholar 

  31. H. Nishiura and T. Fukuyama, Measuring the lower bound of neutrino mass at LHC in Higgs Triplet Model, Phys. Rev. D 80 (2009) 017302 [arXiv:0905.3963] [SPIRES].

    ADS  Google Scholar 

  32. H. Nishiura and T. Fukuyama, Determination of the unknown absolute neutrino mass and MNS parameters at the LHC in the Higgs triplet model, arXiv:0909.0595 [SPIRES].

  33. A. Abada, C. Biggio, F. Bonnet, M.B. Gavela and T. Hambye, Low energy effects of neutrino masses, JHEP 12 (2007) 061 [arXiv:0707.4058] [SPIRES].

    Article  ADS  Google Scholar 

  34. E.J. Chun, K.Y. Lee and S.C. Park, Testing Higgs triplet model and neutrino mass patterns, Phys. Lett. B 566 (2003) 142 [hep-ph/0304069] [SPIRES].

    ADS  Google Scholar 

  35. M. Kakizaki, Y. Ogura and F. Shima, Lepton flavor violation in the triplet Higgs model, Phys. Lett. B 566 (2003) 210 [hep-ph/0304254] [SPIRES].

    ADS  Google Scholar 

  36. Muon G-2 collaboration, G.W. Bennett et al., Final report of the muon E821 anomalous magnetic moment measurement at BNL, Phys. Rev. D 73 (2006) 072003 [hep-ex/0602035] [SPIRES].

    ADS  Google Scholar 

  37. M. Davier et al., The Discrepancy Between τ and e + e Spectral Functions Revisited and the Consequences for the Muon Magnetic Anomaly, arXiv:0906.5443 [SPIRES].

  38. M. Davier, A. Hoecker, B. Malaescu, C.Z. Yuan and Z. Zhang, Reevaluation of the hadronic contribution to the muon magnetic anomaly using new e + e π + π cross section data from BABAR, arXiv:0908.4300 [SPIRES].

  39. J.F. de Troconiz and F.J. Yndurain, The hadronic contributions to the anomalous magnetic moment of the muon, Phys. Rev. D 71 (2005) 073008 [hep-ph/0402285] [SPIRES.

    ADS  Google Scholar 

  40. K. Hagiwara, A.D. Martin, D. Nomura and T. Teubner, Improved predictions for g-2 of the muon and α QED(M Z 2), Phys. Lett. B 649 (2007) 173 [hep-ph/0611102] [SPIRES].

    ADS  Google Scholar 

  41. M. Davier, S. Eidelman, A. Hocker and Z. Zhang, Confronting spectral functions from e + e annihilation and τ decays: Consequences for the muon magnetic moment, Eur. Phys. J. C 27 (2003) 497 [hep-ph/0208177] [SPIRES].

    ADS  Google Scholar 

  42. M. Davier, S. Eidelman, A. Hocker and Z. Zhang, Updated estimate of the muon magnetic moment using revised results from e + e annihilation, Eur. Phys. J. C 31 (2003) 503 [hep-ph/0308213] [SPIRES].

    ADS  Google Scholar 

  43. M. Davier, The hadronic contribution to (g-2)(mu), Nucl. Phys. Proc. Suppl. 169 (2007) 288 [hep-ph/0701163] [SPIRES].

    Article  ADS  Google Scholar 

  44. F. Jegerlehner, Essentials of the Muon g-2, Acta Phys. Polon. B 38 (2007) 3021 [hep-ph/0703125] [SPIRES].

    ADS  Google Scholar 

  45. J. Prades, Standard Model Prediction of the Muon Anomalous Magnetic Moment, arXiv:0909.2546 [SPIRES].

  46. J.P. Leveille, The Second Order Weak Correction to (G-2) of the Muon in Arbitrary Gauge Models, Nucl. Phys. B 137 (1978) 63 [SPIRES].

    Article  ADS  Google Scholar 

  47. V.D. Barger, H. Baer, W.-Y. Keung and R.J.N. Phillips, Decays of weak vector bosons and t quarks into doubly charged Higgs scalars, Phys. Rev. D 26 (1982) 218 [SPIRES].

    ADS  Google Scholar 

  48. J.F. Gunion, J. Grifols, A. Mendez, B. Kayser and F.I. Olness, Higgs Bosons in Left-Right Symmetric Models, Phys. Rev. D 40 (1989) 1546 [SPIRES].

    ADS  Google Scholar 

  49. R.M. Francis, M. Frank and C.S. Kalman, Anomalous magnetic moment of the muon arising from the extensions of the supersymmetric standard model based on left-right symmetry, Phys. Rev. D 43 (1991) 2369 [SPIRES].

    ADS  Google Scholar 

  50. E. Accomando et al., Workshop on CP Studies and Non-Standard Higgs Physics, hep-ph/0608079 [SPIRES].

  51. A. Dedes and H.E. Haber, Can the Higgs sector contribute significantly to the muon anomalous magnetic moment?, JHEP 05 (2001) 006 [hep-ph/0102297] [SPIRES].

    ADS  Google Scholar 

  52. J.D. Bjorken and S. Weinberg, A Mechanism for Nonconservation of Muon Number, Phys. Rev. Lett. 38 (1977) 622 [SPIRES].

    Article  ADS  Google Scholar 

  53. S.M. Barr and A. Zee, Electric dipole moment of the electron and of the neutron, Phys. Rev. Lett. 65 (1990) 21 [Erratum ibid. 65 (1990) 2920] [SPIRES].

    Article  ADS  Google Scholar 

  54. K. Cheung and O.C.W. Kong, Can the two-Higgs-doublet model survive the constraint from the muon anomalous magnetic moment as suggested?, Phys. Rev. D 68 (2003) 053003 [hep-ph/0302111] [SPIRES].

    ADS  Google Scholar 

  55. K. Cheung, O.C.W. Kong and J.S. Lee, Electric and anomalous magnetic dipole moments of the muon in the MSSM, JHEP 06 (2009) 020 [arXiv:0904.4352] [SPIRES].

    Article  ADS  Google Scholar 

  56. T. Moroi, The Muon Anomalous Magnetic Dipole Moment in the Minimal Supersymmetric Standard Model, Phys. Rev. D 53 (1996) 6565 [Erratum ibid. D 56 (1997) 4424] [hep-ph/9512396] [SPIRES].

    ADS  Google Scholar 

  57. T. Fukuyama, T. Kikuchi and N. Okada, Lepton flavor violating processes and muon g-2 in minimal supersymmetric SO(10) model, Phys. Rev. D 68 (2003) 033012 [hep-ph/0304190] [SPIRES].

    ADS  Google Scholar 

  58. A. Zee, Quantum numbers of Majorana neutrino masses, Nucl. Phys. B 264 (1986) 99 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  59. K.S. Babu, Model of ‘Calculable’ Majorana Neutrino Masses, Phys. Lett. B 203 (1988) 132 [SPIRES].

    ADS  Google Scholar 

  60. Sindrum collaboration, U. Bellgardt et al., Search for the Decay μ+ → e + e + e , Nucl. Phys. B 299 (1988) 1 [SPIRES].

    Article  ADS  Google Scholar 

  61. Mega collaboration, M.L. Brooks et al., New Limit for the Family-Number Non-conserving Decay μ + to e +, Phys. Rev. Lett. 83 (1999) 1521 [hep-ex/9905013] [SPIRES].

    Article  ADS  Google Scholar 

  62. Belle collaboration, Y. Miyazaki et al., Search for Lepton Flavor Violating tau Decays into Three Leptons, Phys. Lett. B 660 (2008) 154 [arXiv:0711.2189] [SPIRES].

    ADS  Google Scholar 

  63. L. Willmann et al., New Bounds from Searching for Muonium to Antimuonium Conversion, Phys. Rev. Lett. 82 (1999) 49 [hep-ex/9807011] [SPIRES].

    Article  ADS  Google Scholar 

  64. S. Hashimoto et al., Letter of intent for KEK Super B Factory, KEK-REPORT-2004-4 SPIRES].

  65. SuperKEKB Physics Working Group collaboration, A.G. Akeroyd et al., Physics at super B factory, hep-ex/0406071 [SPIRES].

  66. M. Bona et al., SuperB: A High-Luminosity Asymmetric e + e Super Flavor Factory. Conceptual Design Report, arXiv:0709.0451 [SPIRES].

  67. T. Browder et al., On the Physics Case of a Super Flavour Factory, JHEP 02 (2008) 110 [arXiv:0710.3799] [SPIRES].

    Article  ADS  Google Scholar 

  68. T.E. Browder, T. Gershon, D. Pirjol, A. Soni and J. Zupan, New Physics at a Super Flavor Factory, arXiv:0802.3201 [SPIRES].

  69. R. Santinelli, Study of CMS sensitivity to neutrinoless τ decay at LHC, eConf C 0209101 (2002) WE14 [hep-ex/0210033] [SPIRES].

    Google Scholar 

  70. M. Giffels, J. Kallarackal, M. Krämer, B. O’Leary and A. Stahl, The lepton-flavour violating decay \( \tau \to \mu \mu \bar \mu \) at the LHC, Phys. Rev. D 77 (2008) 073010 [arXiv:0802.0049] [SPIRES].

    ADS  Google Scholar 

  71. Meg collaboration, J. Adam et al., A limit for the μeγ decay from the MEG experiment, arXiv:0908.2594 [SPIRES].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Sugiyama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fukuyama, T., Sugiyama, H. & Tsumura, K. Constraints from LFV processes in the Higgs triplet model. J. High Energ. Phys. 2010, 44 (2010). https://doi.org/10.1007/JHEP03(2010)044

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2010)044

Keywords

Navigation