Abstract
We outline a general derivation of holographic duality between “TQFT gravity” — the path integral of a 3d TQFT summed over different topologies — and an ensemble of boundary 2d CFTs. The key idea is to place the boundary ensemble on a Riemann surface of very high genus, where the duality trivializes. The duality relation at finite genus is then obtained by genus reduction. Our derivation is generic and does not rely on an explicit form of the bulk or boundary partition functions. It guarantees unitarity and suggests that the bulk sum should include all possible topologies. In the case of Abelian Chern-Simons theory with compact gauge group we argue that the weights of the boundary ensemble are equal, while the bulk sum reduces to a finite sum over equivalence classes of topologies, represented by handlebodies with possible line defects.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
A. Castro et al., The Gravity Dual of the Ising Model, Phys. Rev. D 85 (2012) 024032 [arXiv:1111.1987] [INSPIRE].
C.-M. Jian et al., Establishing strongly-coupled 3D AdS quantum gravity with Ising dual using all-genus partition functions, JHEP 10 (2020) 129 [arXiv:1907.06656] [INSPIRE].
I. Romaidis and I. Runkel, CFT Correlators and Mapping Class Group Averages, Commun. Math. Phys. 405 (2024) 247 [arXiv:2309.14000] [INSPIRE].
N. Afkhami-Jeddi, H. Cohn, T. Hartman and A. Tajdini, Free partition functions and an averaged holographic duality, JHEP 01 (2021) 130 [arXiv:2006.04839] [INSPIRE].
A. Maloney and E. Witten, Averaging over Narain moduli space, JHEP 10 (2020) 187 [arXiv:2006.04855] [INSPIRE].
S. Datta et al., Adding flavor to the Narain ensemble, JHEP 05 (2022) 090 [arXiv:2102.12509] [INSPIRE].
J. Cotler and K. Jensen, AdS3 wormholes from a modular bootstrap, JHEP 11 (2020) 058 [arXiv:2007.15653].
A. Dymarsky and A. Shapere, Comments on the holographic description of Narain theories, JHEP 10 (2021) 197 [arXiv:2012.15830] [INSPIRE].
N. Benjamin, C.A. Keller, H. Ooguri and I.G. Zadeh, Narain to Narnia, Commun. Math. Phys. 390 (2022) 425 [arXiv:2103.15826] [INSPIRE].
S. Collier and A. Maloney, Wormholes and spectral statistics in the Narain ensemble, JHEP 03 (2022) 004 [arXiv:2106.12760] [INSPIRE].
M. Ashwinkumar et al., Chern-Simons invariants from ensemble averages, JHEP 08 (2021) 044 [arXiv:2104.14710] [INSPIRE].
M. Ashwinkumar, J.M. Leedom and M. Yamazaki, Duality origami: Emergent ensemble symmetries in holography and Swampland, Phys. Lett. B 856 (2024) 138935 [arXiv:2305.10224] [INSPIRE].
M. Ashwinkumar, A. Kidambi, J.M. Leedom and M. Yamazaki, Generalized Narain Theories Decoded: Discussions on Eisenstein series, Characteristics, Orbifolds, Discriminants and Ensembles in any Dimension, arXiv:2311.00699 [INSPIRE].
J. Kames-King, A. Kanargias, B. Knighton and M. Usatyuk, The lion, the witch, and the wormhole: ensemble averaging the symmetric product orbifold, JHEP 07 (2024) 236 [arXiv:2306.07321] [INSPIRE].
O. Aharony, A. Dymarsky and A.D. Shapere, Holographic description of Narain CFTs and their code-based ensembles, JHEP 05 (2024) 343 [arXiv:2310.06012] [INSPIRE].
S. Forste et al., Ensemble averages of ℤ2 orbifold classes of Narain CFTs, JHEP 05 (2024) 240 [arXiv:2403.02976] [INSPIRE].
V. Meruliya, S. Mukhi and P. Singh, Poincaré Series, 3d Gravity and Averages of Rational CFT, JHEP 04 (2021) 267 [arXiv:2102.03136] [INSPIRE].
A. Maloney and E. Witten, Quantum Gravity Partition Functions in Three Dimensions, JHEP 02 (2010) 029 [arXiv:0712.0155] [INSPIRE].
S. Giombi, A. Maloney and X. Yin, One-loop Partition Functions of 3D Gravity, JHEP 08 (2008) 007 [arXiv:0804.1773] [INSPIRE].
C.A. Keller and A. Maloney, Poincaré Series, 3D Gravity and CFT Spectroscopy, JHEP 02 (2015) 080 [arXiv:1407.6008] [INSPIRE].
V. Mikhaylov, Teichmüller TQFT vs. Chern-Simons theory, JHEP 04 (2018) 085 [arXiv:1710.04354] [INSPIRE].
J. Chandra, S. Collier, T. Hartman and A. Maloney, Semiclassical 3D gravity as an average of large-c CFTs, JHEP 12 (2022) 069 [arXiv:2203.06511] [INSPIRE].
S. Collier, L. Eberhardt, B. Mühlmann and V.A. Rodriguez, The Virasoro minimal string, SciPost Phys. 16 (2024) 057 [arXiv:2309.10846] [INSPIRE].
S. Collier, L. Eberhardt and M. Zhang, Solving 3d gravity with Virasoro TQFT, SciPost Phys. 15 (2023) 151 [arXiv:2304.13650] [INSPIRE].
S. Collier, L. Eberhardt and M. Zhang, 3d gravity from Virasoro TQFT: Holography, wormholes and knots, SciPost Phys. 17 (2024) 134 [arXiv:2401.13900] [INSPIRE].
L. Chen, L.-Y. Hung, Y. Jiang and B.-X. Lao, Quantum 2D Liouville Path-Integral Is a Sum over Geometries in AdS3 Einstein Gravity, arXiv:2403.03179 [INSPIRE].
L.-Y. Hung and Y. Jiang, Building up quantum spacetimes with BCFT Legos, arXiv:2404.00877 [INSPIRE].
J. de Boer, D. Liska and B. Post, Multiboundary wormholes and OPE statistics, JHEP 10 (2024) 207 [arXiv:2405.13111] [INSPIRE].
A. Barbar, A. Dymarsky and A.D. Shapere, Global Symmetries, Code Ensembles, and Sums Over Geometries, arXiv:2310.13044 [INSPIRE].
D. Belov and G.W. Moore, Classification of Abelian spin Chern-Simons theories, hep-th/0505235 [INSPIRE].
B. Runge, Codes and Siegel modular forms, Discrete Math. 148 (1996) 175.
P. Kraus and F. Larsen, Partition functions and elliptic genera from supergravity, JHEP 01 (2007) 002 [hep-th/0607138] [INSPIRE].
N. Angelinos, D. Chakraborty and A. Dymarsky, Optimal Narain CFTs from codes, JHEP 11 (2022) 118 [arXiv:2206.14825] [INSPIRE].
A. Dymarsky and A. Shapere, Quantum stabilizer codes, lattices, and CFTs, JHEP 03 (2020) 160 [arXiv:2009.01244] [INSPIRE].
F. Benini, C. Copetti and L. Di Pietro, Factorization and global symmetries in holography, SciPost Phys. 14 (2023) 019 [arXiv:2203.09537] [INSPIRE].
J. Henriksson and B. McPeak, Averaging over codes and an SU(2) modular bootstrap, JHEP 11 (2023) 035 [arXiv:2208.14457] [INSPIRE].
A. Dymarsky, J. Henriksson and B. McPeak, Holographic duality from Howe duality: Chern-Simons gravity as an ensemble of code CFTs, in progress.
D. Gaiotto and J. Kulp, Orbifold groupoids, JHEP 02 (2021) 132 [arXiv:2008.05960] [INSPIRE].
S.-H. Shao, What’s Done Cannot Be Undone: TASI Lectures on Non-Invertible Symmetries, arXiv:2308.00747 [INSPIRE].
A. Kapustin and N. Saulina, Topological boundary conditions in abelian Chern-Simons theory, Nucl. Phys. B 845 (2011) 393 [arXiv:1008.0654] [INSPIRE].
A. Kapustin and N. Saulina, Surface operators in 3d Topological Field Theory and 2d Rational Conformal Field Theory, arXiv:1012.0911 [INSPIRE].
K. Roumpedakis, S. Seifnashri and S.-H. Shao, Higher Gauging and Non-invertible Condensation Defects, Commun. Math. Phys. 401 (2023) 3043 [arXiv:2204.02407] [INSPIRE].
J. Raeymaekers and P. Rossi, Wormholes and surface defects in rational ensemble holography, JHEP 01 (2024) 104 [arXiv:2312.02276] [INSPIRE].
G. Salton, B. Swingle and M. Walter, Entanglement from Topology in Chern-Simons Theory, Phys. Rev. D 95 (2017) 105007 [arXiv:1611.01516] [INSPIRE].
A. Barbar, A. Dymarsky and A.D. Shapere, in progress.
J.B. Hartle and S.W. Hawking, Path Integral Derivation of Black Hole Radiance, Phys. Rev. D 13 (1976) 2188 [INSPIRE].
T. Banks and N. Seiberg, Symmetries and Strings in Field Theory and Gravity, Phys. Rev. D 83 (2011) 084019 [arXiv:1011.5120] [INSPIRE].
D. Harlow and H. Ooguri, Symmetries in quantum field theory and quantum gravity, Commun. Math. Phys. 383 (2021) 1669 [arXiv:1810.05338] [INSPIRE].
P. Heegaard, Forstudier til en topologisk teori for de algebraiske fladers sammenhaeng, Ph.D. thesis, Copenhagen (1898).
J. Raeymaekers, A note on ensemble holography for rational tori, JHEP 12 (2021) 177 [arXiv:2110.08833] [INSPIRE].
V. Meruliya and S. Mukhi, AdS3 gravity and RCFT ensembles with multiple invariants, JHEP 08 (2021) 098 [arXiv:2104.10178] [INSPIRE].
S. Gukov, E. Martinec, G.W. Moore and A. Strominger, Chern-Simons gauge theory and the AdS3 / CFT2 correspondence, in the proceedings of the From Fields to Strings: Circumnavigating Theoretical Physics: A Conference in Tribute to Ian Kogan, Oxford, U.K., January 8–10 (2004). [https://doi.org/10.1142/9789812775344_0036] [hep-th/0403225] [INSPIRE].
D.S. Freed, G.W. Moore and C. Teleman, Topological symmetry in quantum field theory, arXiv:2209.07471 [INSPIRE].
Y.-H. Lin and S.-H. Shao, Bootstrapping noninvertible symmetries, Phys. Rev. D 107 (2023) 125025 [arXiv:2302.13900] [INSPIRE].
E. Witten, On S duality in Abelian gauge theory, Selecta Math. 1 (1995) 383 [hep-th/9505186] [INSPIRE].
E.P. Verlinde, Global aspects of electric-magnetic duality, Nucl. Phys. B 455 (1995) 211 [hep-th/9506011] [INSPIRE].
Y. Choi et al., Noninvertible duality defects in 3+1 dimensions, Phys. Rev. D 105 (2022) 125016 [arXiv:2111.01139] [INSPIRE].
A. Cappelli, C. Itzykson and J.-B. Zuber, Modular invariant partition functions in two dimensions, Nucl. Phys. B 280 (1987) 445 [INSPIRE].
A. Cappelli, C. Itzykson and J.B. Zuber, The ADE Classification of Minimal and A1(1) Conformal Invariant Theories, Commun. Math. Phys. 113 (1987) 1 [INSPIRE].
J. Korinman, Decomposition of some Witten-Reshetikhin-Turaev Representations into Irreducible Factors, SIGMA 15 (2019) 011 [arXiv:1406.4389] [INSPIRE].
V. Balasubramanian, J.R. Fliss, R.G. Leigh and O. Parrikar, Multi-Boundary Entanglement in Chern-Simons Theory and Link Invariants, JHEP 04 (2017) 061 [arXiv:1611.05460] [INSPIRE].
V. Balasubramanian et al., Entanglement Entropy and the Colored Jones Polynomial, JHEP 05 (2018) 038 [arXiv:1801.01131] [INSPIRE].
D. Melnikov et al., From Topological to Quantum Entanglement, JHEP 05 (2019) 116 [arXiv:1809.04574] [INSPIRE].
D. Melnikov, Entanglement classification from a topological perspective, Phys. Rev. D 107 (2023) 126005 [arXiv:2208.13901] [INSPIRE].
D. Melnikov, Connectomes as holographic states, Nucl. Phys. B 1010 (2025) 116757 [arXiv:2312.16683] [INSPIRE].
S. Yahagi, Narain CFTs and error-correcting codes on finite fields, JHEP 08 (2022) 058 [arXiv:2203.10848] [INSPIRE].
K. Kawabata, T. Nishioka and T. Okuda, Narain CFTs from quantum codes and their ℤ2 gauging, JHEP 05 (2024) 133 [arXiv:2308.01579] [INSPIRE].
N. Benjamin, S. Collier and A. Maloney, Pure Gravity and Conical Defects, JHEP 09 (2020) 034 [arXiv:2004.14428] [INSPIRE].
H. Maxfield and G.J. Turiaci, The path integral of 3D gravity near extremality; or, JT gravity with defects as a matrix integral, JHEP 01 (2021) 118 [arXiv:2006.11317] [INSPIRE].
G. Di Ubaldo and E. Perlmutter, AdS3 Pure Gravity and Stringy Unitarity, Phys. Rev. Lett. 132 (2024) 041602 [arXiv:2308.01787] [INSPIRE].
J. Cotler and K. Jensen, AdS3 gravity and random CFT, JHEP 04 (2021) 033 [arXiv:2006.08648] [INSPIRE].
D.L. Jafferis, L. Rozenberg and G. Wong, 3d Gravity as a random ensemble, arXiv:2407.02649 [INSPIRE].
J. Henriksson, A. Kakkar and B. McPeak, Classical codes and chiral CFTs at higher genus, JHEP 05 (2022) 159 [arXiv:2112.05168] [INSPIRE].
J. Henriksson, A. Kakkar and B. McPeak, Narain CFTs and quantum codes at higher genus, JHEP 04 (2023) 011 [arXiv:2205.00025] [INSPIRE].
P. Gaborit, Mass formulas for self-dual codes over z/sub 4/and f/sub q/+ uf/sub q/rings, IEEE Trans. Inform. Theory 42 (1996) 1222.
Acknowledgments
We thank Scott Collier, Tom Hartman, Shu-Heng Shao and especially Ahmed Barbar for discussions. AD is thankful to Institute Pascal for hospitality, where this work was completed. AD is supported by the NSF grant PHY 2310426.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2405.20366
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Dymarsky, A., Shapere, A. TQFT gravity and ensemble holography. J. High Energ. Phys. 2025, 91 (2025). https://doi.org/10.1007/JHEP02(2025)091
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP02(2025)091