Skip to main content
Log in

On field theory thermalization from gravitational collapse

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Motivated by its field theory interpretation, we study gravitational collapse of a minimally coupled massless scalar field in Einstein gravity with a negative cosmological constant. After demonstrating the accuracy of the numerical algorithm for the questions we are interested in, we investigate various aspects of the apparent horizon formation. In particular, we study the time and radius of the apparent horizon formed as functions of the initial Gaussian profile for the scalar field. We comment on several aspects of the dual field theory picture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1133] [hep-th/9711200] [INSPIRE].

  2. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  3. S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  4. O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  6. D.T. Son and A.O. Starinets, Viscosity, black holes and quantum field theory, Ann. Rev. Nucl. Part. Sci. 57 (2007) 95 [arXiv:0704.0240] [INSPIRE].

    Article  ADS  Google Scholar 

  7. V.E. Hubeny and M. Rangamani, A holographic view on physics out of equilibrium, Adv. High Energy Phys. 2010 (2010) 297916 [arXiv:1006.3675] [INSPIRE].

    Google Scholar 

  8. V.E. Hubeny, S. Minwalla and M. Rangamani, The fluid/gravity correspondence, arXiv:1107.5780 [INSPIRE].

  9. E. Shuryak, Why does the quark gluon plasma at RHIC behave as a nearly ideal fluid?, Prog. Part. Nucl. Phys. 53 (2004) 273 [hep-ph/0312227] [INSPIRE].

    Article  ADS  Google Scholar 

  10. E.V. Shuryak, What RHIC experiments and theory tell us about properties of quark-gluon plasma?, Nucl. Phys. A 750 (2005) 64 [hep-ph/0405066] [INSPIRE].

    ADS  Google Scholar 

  11. U.W. Heinz, Thermalization at RHIC, AIP Conf. Proc. 739 (2005) 163 [nucl-th/0407067] [INSPIRE].

    Article  ADS  Google Scholar 

  12. B. Müller, Theoretical challenges posed by the data from RHIC, Prog. Theor. Phys. Suppl. 174 (2008) 103 [INSPIRE].

    Article  ADS  Google Scholar 

  13. D. Garfinkle and L.A. Pando Zayas, Rapid thermalization in field theory from gravitational collapse, Phys. Rev. D 84 (2011) 066006 [arXiv:1106.2339] [INSPIRE].

    ADS  Google Scholar 

  14. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a holographic superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [INSPIRE].

    Article  ADS  Google Scholar 

  15. S.S. Gubser, Colorful horizons with charge in anti-de Sitter space, Phys. Rev. Lett. 101 (2008) 191601 [arXiv:0803.3483] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. G.T. Horowitz, Introduction to holographic superconductors, arXiv:1002.1722 [INSPIRE].

  18. M. Cubrovic, J. Zaanen and K. Schalm, String theory, quantum phase transitions and the emergent Fermi-liquid, Science 325 (2009) 439 [arXiv:0904.1993] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. T. Faulkner, N. Iqbal, H. Liu, J. McGreevy and D. Vegh, Strange metal transport realized by gauge/gravity duality, Science 329 (2010) 1043 [INSPIRE].

    Article  ADS  Google Scholar 

  20. J. McGreevy, Holographic duality with a view toward many-body physics, Adv. High Energy Phys. 2010 (2010) 723105 [arXiv:0909.0518] [INSPIRE].

    Google Scholar 

  21. M. Rigol, V. Dunjko, and M. Olshanii, Thermalization and its mechanism for generic isolated quantum systems, Nature 452 (2008) 854 [arXiv:0708.1324].

    Article  ADS  Google Scholar 

  22. M. Rigol, Breakdown of thermalization in finite one-dimensional systems, Phys. Rev. Lett. 103 (2009) 100403 [INSPIRE].

    Article  ADS  Google Scholar 

  23. P. Calabrese and J.L. Cardy, Time-dependence of correlation functions following a quantum quench, Phys. Rev. Lett. 96 (2006) 136801 [cond-mat/0601225] [INSPIRE].

    Article  ADS  Google Scholar 

  24. J. Cardy, Measuring entanglement using quantum quenches, Phys. Rev. Lett. 106 (2011) 150404 [arXiv:1012.5116] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. J. Abajo-Arrastia, J. Aparicio and E. Lopez, Holographic evolution of entanglement entropy, JHEP 11 (2010) 149 [arXiv:1006.4090] [INSPIRE].

    Article  ADS  Google Scholar 

  26. J. Aparicio and E. Lopez, Evolution of two-point functions from holography, JHEP 12 (2011) 082 [arXiv:1109.3571] [INSPIRE].

    Article  ADS  Google Scholar 

  27. Z. Hadzibabic et al., Two-species mixture of quantum degenerate Bose and Fermi gases, Phys. Rev. Lett. 88 (2002) 160401 [INSPIRE].

    Article  ADS  Google Scholar 

  28. S. Bhattacharyya and S. Minwalla, Weak field black hole formation in asymptotically AdS spacetimes, JHEP 09 (2009) 034 [arXiv:0904.0464] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. V. Balasubramanian et al., Thermalization of strongly coupled field theories, Phys. Rev. Lett. 106 (2011) 191601 [arXiv:1012.4753] [INSPIRE].

    Article  ADS  Google Scholar 

  30. J. Erdmenger, S. Lin and T.H. Ngo, A moving mirror in AdS space as a toy model for holographic thermalization, JHEP 04 (2011) 035 [arXiv:1101.5505] [INSPIRE].

    Article  ADS  Google Scholar 

  31. V. Balasubramanian et al., Holographic thermalization, Phys. Rev. D 84 (2011) 026010 [arXiv:1103.2683] [INSPIRE].

    ADS  Google Scholar 

  32. H. Ebrahim and M. Headrick, Instantaneous thermalization in holographic plasmas, arXiv:1010.5443 [INSPIRE].

  33. C. Asplund, D. Berenstein and D. Trancanelli, Evidence for fast thermalization in the BMN matrix model, Phys. Rev. Lett. 107 (2011) 171602 [arXiv:1104.5469] [INSPIRE].

    Article  ADS  Google Scholar 

  34. D. Garfinkle, Gravitational collapse in anti de Sitter space, Phys. Rev. D 70 (2004) 104015 [gr-qc/0408064] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  35. D. Garfinkle, Numerical simulation of a possible counterexample to cosmic censorship, Phys. Rev. D 69 (2004) 124017 [gr-qc/0403078] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  36. P. Bizon and A. Rostworowski, On weakly turbulent instability of anti-de Sitter space, Phys. Rev. Lett. 107 (2011) 031102 [arXiv:1104.3702] [INSPIRE].

    Article  ADS  Google Scholar 

  37. J. Jalmuzna, A. Rostworowski and P. Bizon, A comment on AdS collapse of a scalar field in higher dimensions, Phys. Rev. D 84 (2011) 085021 [arXiv:1108.4539] [INSPIRE].

    ADS  Google Scholar 

  38. O.J. Dias, G.T. Horowitz and J.E. Santos, Gravitational turbulent instability of anti-de Sitter space, arXiv:1109.1825 [INSPIRE].

  39. U.H. Danielsson, E. Keski-Vakkuri and M. Kruczenski, Spherically collapsing matter in AdS, holography and shellons, Nucl. Phys. B 563 (1999) 279 [hep-th/9905227] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. U.H. Danielsson, E. Keski-Vakkuri and M. Kruczenski, Black hole formation in AdS and thermalization on the boundary, JHEP 02 (2000) 039 [hep-th/9912209] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  41. S.B. Giddings and S.F. Ross, D3-brane shells to black branes on the Coulomb branch, Phys. Rev. D 61 (2000) 024036 [hep-th/9907204] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  42. S.B. Giddings and A. Nudelman, Gravitational collapse and its boundary description in AdS, JHEP 02 (2002) 003 [hep-th/0112099] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  43. G. Alberghi, R. Casadio and G. Venturi, Thermodynamics for radiating shells in anti-de Sitter space-time, Phys. Lett. B 557 (2003) 7 [gr-qc/0302038] [INSPIRE].

    ADS  Google Scholar 

  44. G. Alberghi and R. Casadio, On the gravitational collapse in anti-de Sitter space-time, Phys. Lett. B 571 (2003) 245 [gr-qc/0306002] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  45. D. Birmingham and S. Sen, Gott time machines, BTZ black hole formation and Choptuik scaling, Phys. Rev. Lett. 84 (2000) 1074 [hep-th/9908150] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  46. V. Husain and M. Olivier, Scalar field collapse in three-dimensional AdS space-time, Class. Quant. Grav. 18 (2001) L1 [gr-qc/0008060] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  47. F. Pretorius and M.W. Choptuik, Gravitational collapse in (2+1)-dimensional AdS space-time, Phys. Rev. D 62 (2000) 124012 [gr-qc/0007008] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  48. D. Birmingham, Choptuik scaling and quasinormal modes in the AdS/CFT correspondence, Phys. Rev. D 64 (2001) 064024 [hep-th/0101194] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  49. V. Husain, G. Kunstatter, B. Preston and M. Birukou, Anti-de Sitter gravitational collapse, Class. Quant. Grav. 20 (2003) L23 [gr-qc/0210011] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  50. M. Birukou, V. Husain, G. Kunstatter, E. Vaz and M. Olivier, Spherically symmetric scalar field collapse in any dimension, Phys. Rev. D 65 (2002) 104036 [INSPIRE].

    ADS  Google Scholar 

  51. H. Witek et al., Black holes in a box, J. Phys. Conf. Ser. 229 (2010) 012072 [INSPIRE].

    Article  ADS  Google Scholar 

  52. H. Witek et al., Black holes in a box: towards the numerical evolution of black holes in AdS, Phys. Rev. D 82 (2010) 104037 [arXiv:1004.4633] [INSPIRE].

    ADS  Google Scholar 

  53. P.M. Chesler and L.G. Yaffe, Horizon formation and far-from-equilibrium isotropization in supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 102 (2009) 211601 [arXiv:0812.2053] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  54. P.M. Chesler and L.G. Yaffe, Boost invariant flow, black hole formation and far-from-equilibrium dynamics in N = 4 supersymmetric Yang-Mills theory, Phys. Rev. D 82 (2010) 026006 [arXiv:0906.4426] [INSPIRE].

    ADS  Google Scholar 

  55. S. Sotiriadis and J. Cardy, Quantum quench in interacting field theory: a self-consistent approximation, Phys. Rev. B 81 (2010) 134305 [arXiv:1002.0167] [INSPIRE].

    ADS  Google Scholar 

  56. P. Calabrese and J. Cardy, Quantum quenches in extended systems, J. Stat. Mech. (2007) P06008 [arXiv:0704.1880] [INSPIRE].

  57. M.P. Heller, R.A. Janik and P. Witaszczyk, The characteristics of thermalization of boost-invariant plasma from holography, arXiv:1103.3452 [INSPIRE].

  58. R.A. Janik and R.B. Peschanski, Asymptotic perfect fluid dynamics as a consequence of AdS/CFT, Phys. Rev. D 73 (2006) 045013 [hep-th/0512162] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  59. J. Bjorken, Highly relativistic nucleus-nucleus collisions: the central rapidity region, Phys. Rev. D 27 (1983) 140 [INSPIRE].

    ADS  Google Scholar 

  60. P.M. Chesler and L.G. Yaffe, Holography and colliding gravitational shock waves in asymptotically AdS 5 spacetime, Phys. Rev. Lett. 106 (2011) 021601 [arXiv:1011.3562] [INSPIRE].

    Article  ADS  Google Scholar 

  61. V. Balasubramanian and P. Kraus, A stress tensor for anti-de Sitter gravity, Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  62. S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  63. B. Back et al., The PHOBOS perspective on discoveries at RHIC, Nucl. Phys. A 757 (2005) 28 [nucl-ex/0410022] [INSPIRE].

    ADS  Google Scholar 

  64. The ALICE collaboration, K. Aamodt et al., Elliptic flow of charged particles in Pb-Pb collisions at 2.76 TeV, Phys. Rev. Lett. 105 (2010) 252302 [arXiv:1011.3914] [INSPIRE].

    Article  ADS  Google Scholar 

  65. The ALICE collaboration, B. Abelev et al., Charged-particle multiplicity density at mid-rapidity in central Pb-Pb collisions at \( \sqrt {{{s_{\text{NN}}}}} \) = 2.76 TeV, Phys. Rev. Lett. 105 (2010) 252301 [arXiv:1011.3916] [INSPIRE].

    Article  ADS  Google Scholar 

  66. D. Minic and M. Pleimling, Non-relativistic AdS/CFT and aging/gravity duality, Phys. Rev. E 78 (2008) 061108 [arXiv:0807.3665] [INSPIRE].

    ADS  Google Scholar 

  67. Y. Nakayama, Universal time-dependent deformations of Schrödinger geometry, JHEP 04 (2010) 102 [arXiv:1002.0615] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  68. J.I. Jottar, R.G. Leigh, D. Minic and L.A. Pando Zayas, Aging and holography, JHEP 11 (2010) 034 [arXiv:1004.3752] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leopoldo A. Pando Zayas.

Additional information

ArXiv ePrint: 1110.5823

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garfinkle, D., Pando Zayas, L.A. & Reichmann, D. On field theory thermalization from gravitational collapse. J. High Energ. Phys. 2012, 119 (2012). https://doi.org/10.1007/JHEP02(2012)119

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP02(2012)119

Keywords

Navigation