Skip to main content
Log in

Holography for chiral scale-invariant models

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Deformation of any d-dimensional conformal field theory by a constant null source for a vector operator of dimension (d + z − 1) is exactly marginal with respect to anisotropic scale invariance, of dynamical exponent z. The holographic duals to such deformations are AdS plane waves, with z = 2 being the Schrödinger geometry. In this paper we explore holography for such chiral scale-invariant models. The special case of z = 0 can be realized with gravity coupled to a scalar, and is of particular interest since it is related to a Lifshitz theory with dynamical exponent two upon dimensional reduction. We show however that the corresponding reduction of the dual field theory is along a null circle, and thus the Lifshitz theory arises upon discrete light cone quantization of an anisotropic scale invariant field theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.T. Son, Toward an AdS/cold atoms correspondence: a geometric realization of the Schrödinger symmetry, Phys. Rev. D 78 (2008) 046003 [arXiv:0804.3972] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  2. K. Balasubramanian and J. McGreevy, Gravity duals for non-relativistic CFTs, Phys. Rev. Lett. 101 (2008) 061601 [arXiv:0804.4053] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  3. C. Duval, G.W. Gibbons and P. Horvathy, Celestial mechanics, conformal structures and gravitational waves, Phys. Rev. D 43 (1991) 3907 [hep-th/0512188] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  4. C. Duval, M. Hassaine and P.A. Horvathy, The geometry of Schrödinger symmetry in gravity background/non-relativistic CFT, Annals Phys. 324 (2009) 1158 [arXiv:0809.3128] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. J.L. Cardy, Critical exponents of the chiral Potts model from conformal field theory, Nucl. Phys. B 389 (1993) 577 [hep-th/9210002] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  6. J. Maldacena, D. Martelli and Y. Tachikawa, Comments on string theory backgrounds with non-relativistic conformal symmetry, JHEP 10 (2008) 072 [arXiv:0807.1100] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  7. S. Hellerman and J. Polchinski, Compactification in the lightlike limit, Phys. Rev. D 59 (1999) 125002 [hep-th/9711037] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  8. K. Balasubramanian and J. McGreevy, The particle number in galilean holography, JHEP 01 (2011) 137 [arXiv:1007.2184] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  9. S. Ostlund, Incommensurate and commensurate phases in asymmetric clock models, Phys. Rev. B 24 (1981) 398 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  10. S. Howes, L.p. Kadanoff and M. Den Nijs, Quantum model for commensurate-incommensurate transitions, Nucl. Phys. B 215 (1983) 169 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  11. V.A. Fateev and A.B. Zamolodchikov, Parafermionic currents in the two-dimensional conformal quantum field theory and selfdual critical points in Z(n) invariant statistical systems, Sov. Phys. JETP 62 (1985) 215 [SPIRES].

    MathSciNet  Google Scholar 

  12. G. Albertini, B.M. McCoy, J.H.H. Perk and S. Tang, Excitation spectruml and order parameter for the integrable N state chiral Potts model, Nucl. Phys. B 314 (1989) 741 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  13. R.J. Baxter, The superintegrable chiral Potts model, Phys. Lett. A 133 (1988) 185 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  14. R.J. Baxter, Free energy of the solvable chiral Potts model, J. Stat. Phys. 52 (1988) 639.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. A. Donos and J.P. Gauntlett, Lifshitz solutions of D = 10 and D = 11 supergravity, JHEP 12 (2010) 002 [arXiv:1008.2062] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  16. M. Guica, K. Skenderis, M. Taylor and B.C. van Rees, Holography for Schrödinger backgrounds, JHEP 02 (2011) 056 [arXiv:1008.1991] [SPIRES].

    Article  ADS  Google Scholar 

  17. S. Olmez, O. Sarioglu and B. Tekin, Mass and angular momentum of asymptotically AdS or flat solutions in the topologically massive gravity, Class. Quant. Grav. 22 (2005) 4355 [gr-qc/0507003] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  18. D.D.K. Chow, C.N. Pope and E. Sezgin, Classification of solutions in topologically massive gravity, Class. Quant. Grav. 27 (2010) 105001 [arXiv:0906.3559] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  19. D. Anninos, G. Compere, S. de Buyl, S. Detournay and M. Guica, The curious case of null warped space, JHEP 11 (2010) 119 [arXiv:1005.4072] [SPIRES].

    Article  ADS  Google Scholar 

  20. K. Skenderis, M. Taylor and B.C. van Rees, Topologically massive gravity and the AdS/CFT correspondence, JHEP 09 (2009) 045 [arXiv:0906.4926] [SPIRES].

    Article  ADS  Google Scholar 

  21. K. Skenderis, M. Taylor and B.C. van Rees, AdS boundary conditions and the topologically massive gravity/CFT correspondence, arXiv:0909.5617 [SPIRES].

  22. S. Kachru, X. Liu and M. Mulligan, Gravity duals of Lifshitz-like fixed points, Phys. Rev. D 78 (2008) 106005 [arXiv:0808.1725] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  23. S.S. Gubser, Curvature singularities: the good, the bad and the naked, Adv. Theor. Math. Phys. 4 (2000) 679 [hep-th/0002160] [SPIRES].

    MathSciNet  MATH  Google Scholar 

  24. R.G. Leigh and N.N. Hoang, Real-time correlators and non-relativistic holography, JHEP 11 (2009) 010 [arXiv:0904.4270] [SPIRES].

    Article  ADS  Google Scholar 

  25. E. Barnes, D. Vaman and C. Wu, Holographic real-time non-relativistic correlators at zero and finite temperature, Phys. Rev. D 82 (2010) 125042 [arXiv:1007.1644] [SPIRES].

    ADS  Google Scholar 

  26. M. Blau, J. Hartong and B. Rollier, Geometry of Schrödinger space-times II: particle and field probes of the causal structure, JHEP 07 (2010) 069 [arXiv:1005.0760] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  27. S.A. Hartnoll and K. Yoshida, Families of IIB duals for nonrelativistic CFTs, JHEP 12 (2008) 071 [arXiv:0810.0298] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  28. J.P. Gauntlett, S. Kim, O. Varela and D. Waldram, Consistent supersymmetric Kaluza-Klein truncations with massive modes, JHEP 04 (2009) 102 [arXiv:0901.0676] [SPIRES].

    Article  ADS  Google Scholar 

  29. A. Donos and J.P. Gauntlett, Supersymmetric solutions for non-relativistic holography, JHEP 03 (2009) 138 [arXiv:0901.0818] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  30. E. O Colgain and H. Yavartanoo, NR CFT 3 duals in M-theory, JHEP 09 (2009) 002 [arXiv:0904.0588] [SPIRES].

    Article  MathSciNet  Google Scholar 

  31. N. Bobev, A. Kundu and K. Pilch, Supersymmetric IIB solutions with Schrödinger symmetry, JHEP 07 (2009) 107 [arXiv:0905.0673] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  32. A. Donos and J.P. Gauntlett, Solutions of type IIB and D = 11 supergravity with Schrödinger(z) symmetry, JHEP 07 (2009) 042 [arXiv:0905.1098] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  33. A. Donos and J.P. Gauntlett, Schrödinger invariant solutions of type IIB with enhanced supersymmetry, JHEP 10 (2009) 073 [arXiv:0907.1761] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  34. H.J. Kim, L.J. Romans and P. van Nieuwenhuizen, The mass spectrum of chiral N = 2 D = 10 supergravity on S 5, Phys. Rev. D 32 (1985) 389 [SPIRES].

    ADS  Google Scholar 

  35. A. Ceresole, G. Dall’Agata, R. D’Auria and S. Ferrara, Spectrum of type IIB supergravity on AdS 5 × T 11 : predictions on N = 1 SCFT’s, Phys. Rev. D 61 (2000) 066001 [hep-th/9905226] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  36. A. Ceresole, G. Dall’Agata and R. D’Auria, KK spectroscopy of type IIB supergravity on AdS 5 × T 11, JHEP 11 (1999) 009 [hep-th/9907216] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  37. M. Taylor, Non-relativistic holography, arXiv:0812.0530 [SPIRES].

  38. I. Kanitscheider, K. Skenderis and M. Taylor, Precision holography for non-conformal branes, JHEP 09 (2008) 094 [arXiv:0807.3324] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  39. I. Kanitscheider and K. Skenderis, Universal hydrodynamics of non-conformal branes, JHEP 04 (2009) 062 [arXiv:0901.1487] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  40. R. Dijkgraaf, Chiral deformations of conformal field theories, Nucl. Phys. B 493 (1997) 588 [hep-th/9609022] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  41. D.Z. Freedman, K. Johnson and J.I. Latorre, Differential regularization and renormalization: a new method of calculation in quantum field theory, Nucl. Phys. B 371 (1992) 353 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  42. D.Z. Freedman, K. Johnson, R. Muñoz-Tapia and X. Vilasis-Cardona, A cutoff procedure and counterterms for differential renormalization, Nucl. Phys. B 395 (1993) 454 [hep-th/9206028] [SPIRES].

    Article  ADS  Google Scholar 

  43. K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav. 19 (2002) 5849 [hep-th/0209067] [SPIRES].

    Article  MathSciNet  MATH  Google Scholar 

  44. I. Papadimitriou and K. Skenderis, AdS/CFT correspondence and geometry, hep-th/0404176 [SPIRES].

  45. I. Papadimitriou and K. Skenderis, Thermodynamics of asymptotically locally AdS spacetimes, JHEP 08 (2005) 004 [hep-th/0505190] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  46. S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of spacetime and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  47. M. Henningson and K. Skenderis, The holographic Weyl anomaly, JHEP 07 (1998) 023 [hep-th/9806087] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  48. J.D. Brown and K.V. Kuchar, Dust as a standard of space and time in canonical quantum gravity, Phys. Rev. D 51 (1995) 5600 [gr-qc/9409001] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  49. J.D. Brown, On variational principles for gravitating perfect fluids, gr-qc/9407008 [SPIRES].

  50. G. Compere, W. Song and A. Virmani, Microscopics of extremal kerr from spinning M5 branes, arXiv:1010.0685 [SPIRES].

  51. M. Guica and A. Strominger, Microscopic realization of the Kerr/CFT correspondence, JHEP 02 (2011) 010 [arXiv:1009.5039] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marika Taylor.

Additional information

ArXiv ePrint: 1010.4800

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caldeira Costa, R.N., Taylor, M. Holography for chiral scale-invariant models. J. High Energ. Phys. 2011, 82 (2011). https://doi.org/10.1007/JHEP02(2011)082

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP02(2011)082

Keywords

Navigation