Abstract
We consider an exactly solvable model for topological phases in (3+1) d whose input data is a strict 2-group. This model, which has a higher gauge theory interpretation, provides a lattice Hamiltonian realisation of the Yetter homotopy 2-type topological quantum field theory. The Hamiltonian yields bulk flux and charge composite excitations that are either point-like or loop-like. Applying a generalised tube algebra approach, we reveal the algebraic structure underlying these excitations and derive the irreducible modules of this algebra, which in turn classify the elementary excitations of the model. As a further application of the tube algebra approach, we demonstrate that the ground state subspace of the three-torus is described by the central subalgebra of the tube algebra for torus boundary, demonstrating the ground state degeneracy is given by the number of elementary loop-like excitations.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
D. Gaiotto, A. Kapustin, N. Seiberg and B. Willett, Generalized global symmetries, JHEP02 (2015) 172 [arXiv:1412.5148] [INSPIRE].
P.-S. Hsin, H.T. Lam and N. Seiberg, Comments on one-form global symmetries and their gauging in 3d and 4d, SciPost Phys.6 (2019) 039 [arXiv:1812.04716] [INSPIRE].
C. Córdova, T.T. Dumitrescu and K. Intriligator, Exploring 2-group global symmetries, JHEP02 (2019) 184 [arXiv:1802.04790] [INSPIRE].
F. Benini, C. Córdova and P.-S. Hsin, On 2-group global symmetries and their anomalies, JHEP03 (2019) 118 [arXiv:1803.09336] [INSPIRE].
Y. Tachikawa, On gauging finite subgroups, arXiv:1712.09542 [INSPIRE].
T. Bartels, Higher gauge theory I: 2-bundles, math.CT/0410328.
J.C. Baez and A.D. Lauda, Higher-dimensional algebra V: 2-groups, math.QA/0307200.
J.C. Baez and J. Huerta, An invitation to higher gauge theory, Gen. Rel. Grav.43 (2011) 2335 [arXiv:1003.4485] [INSPIRE].
A. Kapustin and N. Seiberg, Coupling a QFT to a TQFT and duality, JHEP04 (2014) 001 [arXiv:1401.0740] [INSPIRE].
M. Mackaay, Finite groups, spherical 2-categories, and 4-manifold invariants, Adv. Math.153 (2000) 353.
A. Kapustin and R. Thorngren, Higher symmetry and gapped phases of gauge theories, arXiv:1309.4721 [INSPIRE].
A. Kapustin and R. Thorngren, Topological field theory on a lattice, discrete theta-angles and confinement, Adv. Theor. Math. Phys.18 (2014) 1233 [arXiv:1308.2926] [INSPIRE].
R. Thorngren and C. von Keyserlingk, Higher SPT’s and a generalization of anomaly in-flow, arXiv:1511.02929 [INSPIRE].
A. Rasmussen and Y.-M. Lu, Classification and construction of higher-order symmetry protected topological phases of interacting bosons, arXiv:1809.07325 [INSPIRE].
X.-G. Wen, Emergent anomalous higher symmetries from topological order and from dynamical electromagnetic field in condensed matter systems, Phys. Rev.B 99 (2019) 205139 [arXiv:1812.02517] [INSPIRE].
Z. Wan and J. Wang, Higher anomalies, higher symmetries and cobordisms I: classification of higher-symmetry-protected topological states and their boundary fermionic/bosonic anomalies via a generalized cobordism theory, Ann. Math. Sci. Appl.4 (2019) 107 [arXiv:1812.11967] [INSPIRE].
Z. Wan, J. Wang and Y. Zheng, New higher anomalies, SU(N ) Yang-Mills gauge theory and C PN−1σ-model, arXiv:1812.11968 [INSPIRE].
Z. Wan and J. Wang, Adjoint QCD4, deconfined critical phenomena, symmetry-enriched topological quantum field theory and higher symmetry-extension, Phys. Rev.D 99 (2019) 065013 [arXiv:1812.11955] [INSPIRE].
Z. Wan, J. Wang and Y. Zheng, Quantum 4d Yang-Mills theory and time-reversal symmetric 5d higher-gauge topological field theory, Phys. Rev.D 100 (2019) 085012 [arXiv:1904.00994] [INSPIRE].
C. Zhu, T. Lan and X.-G. Wen, Topological nonlinear σ-model, higher gauge theory and a systematic construction of 3 + 1D topological orders for boson systems, Phys. Rev.B 100 (2019) 045105 [arXiv:1808.09394] [INSPIRE].
M. Cheng, N. Tantivasadakarn and C. Wang, Loop braiding statistics and interacting fermionic symmetry-protected topological phases in three dimensions, Phys. Rev.X 8 (2018) 011054 [arXiv:1705.08911] [INSPIRE].
A. Hatcher, Algebraic topology, Cambridge University Press, Cambridge, U.K. (2002).
S. Eilenberg and S.M. Lane, On the groups H (Π, n), I, Annals Math.58 (1953) 55.
S. Eilenberg and S. MacLane, On the groups H (Π, n), II: methods of computation, Annals Math.60 (1954) 49.
D.J. Williamson and Z. Wang, Hamiltonian models for topological phases of matter in three spatial dimensions, Annals Phys.377 (2017) 311 [arXiv:1606.07144] [INSPIRE].
C. Delcamp and A. Tiwari, From gauge to higher gauge models of topological phases, JHEP10 (2018) 049 [arXiv:1802.10104] [INSPIRE].
C. Delcamp and A. Tiwari, On 2-form gauge models of topological phases, JHEP05 (2019) 064 [arXiv:1901.02249] [INSPIRE].
D.N. Yetter, TQFT’s from homotopy 2-types, J. Knot Theor. Ramifications02 (1993) 113.
T. Porter, Topological quantum field theories from homotopy n-types, J. London Math. Soc.58 (1998) 723.
J.F. Martins and T. Porter, On Yetter’s invariant and an extension of the Dijkgraaf-Witten invariant to categorical groups, Theor. Appl. Categor.18 (2007) 118 [math.QA/0608484] [INSPIRE].
A. Bullivant, M. Calcada, Z. Kádár, J.F. Martins and P. Martin, Higher lattices, discrete two-dimensional holonomy and topological phases in (3 + 1) D with higher gauge symmetry, arXiv:1702.00868 [INSPIRE].
A. Bullivant, M. Calçada, Z. Kádár, P. Martin and J.F. Martins, Topological phases from higher gauge symmetry in 3 + 1 dimensions, Phys. Rev.B 95 (2017) 155118 [arXiv:1606.06639] [INSPIRE].
A. Bullivant and C. Delcamp, Excitations in weak 2-group higher gauge models of topological phases, in preparation.
A. Ocneanu, Chirality for operator algebras, Subfactors (Kyuzeso, 1993) (1994) 39.
A. Ocneanu, Operator algebras, topology and subgroups of quantum symmetry — construction of subgroups of quantum groups, in Taniguchi Conference on Mathematics Nara1 98, Mathematical Society of Japan, (2001), pg. 235.
R. Koenig, G. Kuperberg and B.W. Reichardt, Quantum computation with Turaev-Viro codes, Annals Phys.325 (2010) 2707.
T. Lan and X.-G. Wen, Topological quasiparticles and the holographic bulk-edge relation in (2 + 1)-dimensional string-net models, Phys. Rev.B 90 (2014) 115119 [arXiv:1311.1784] [INSPIRE].
D. Aasen, E. Lake and K. Walker, Fermion condensation and super pivotal categories, arXiv:1709.01941 [INSPIRE].
C. Delcamp, B. Dittrich and A. Riello, Fusion basis for lattice gauge theory and loop quantum gravity, JHEP02 (2017) 061 [arXiv:1607.08881] [INSPIRE].
C. Delcamp, B. Dittrich and A. Riello, On entanglement entropy in non-Abelian lattice gauge theory and 3D quantum gravity, JHEP11 (2016) 102 [arXiv:1609.04806] [INSPIRE].
N. Bultinck, M. Mariën, D.J. Williamson, M.B. Şahinoğlu, J. Haegeman and F. Verstraete, Anyons and matrix product operator algebras, Annals Phys.378 (2017) 183 [arXiv:1511.08090] [INSPIRE].
C. Delcamp, Excitation basis for (3 + 1) D topological phases, JHEP12 (2017) 128 [arXiv:1709.04924] [INSPIRE].
C. Delcamp and B. Dittrich, Towards a dual spin network basis for (3 + 1)D lattice gauge theories and topological phases, JHEP10 (2018) 023 [arXiv:1806.00456] [INSPIRE].
A. Bullivant and C. Delcamp, Tube algebras, excitations statistics and compactification in gauge models of topological phases, JHEP10 (2019) 216 [arXiv:1905.08673] [INSPIRE].
J.H.C. Whitehead, Combinatorial homotopy. II, Bull. Amer. Math. Soc.55 (1949) 453.
R. Brown, P. Higgins and R. Sivera, Non-Abelian algebraic topology, EMS Tracts Math.15 (2011).
D.N. Yetter, TQFT’s from homotopy 2-types, J. Knot Theor. Ramifications02 (1993) 113.
X. Chen, Z.C. Gu and X.G. Wen, Local unitary transformation, long-range quantum entanglement, wave function renormalization and topological order, Phys. Rev.B 82 (2010) 155138 [arXiv:1004.3835] [INSPIRE].
R. Dijkgraaf and E. Witten, Topological gauge theories and group cohomology, Commun. Math. Phys.129 (1990) 393 [INSPIRE].
Y. Wan, J.C. Wang and H. He, Twisted gauge theory model of topological phases in three dimensions, Phys. Rev.B 92 (2015) 045101 [arXiv:1409.3216] [INSPIRE].
V.G. Drinfeld, Quasi Hopf algebras, Alg. Anal.1N6 (1989) 114 [Leningrad Math. J.1 (1990) 1419].
R. Dijkgraaf, V. Pasquier and P. Roche, Quasi Hopf algebras, group cohomology and orbifold models, Nucl. Phys. Proc. Suppl.B 18 (1991) 60.
K. Walker and Z. Wang, (3 + 1)-TQFTs and topological insulators, arXiv:1104.2632 [INSPIRE].
A. Bullivant, Exactly solvable models for topological phases of matter and emergent excitations, Ph.D. thesis, University of Leeds, Leeds, U.K. (2018).
S. Willerton, The twisted Drinfeld double of a finite group via gerbes and finite groupoids, Alg. Geom. Topol.8 (2008) 1419.
S. Jiang, A. Mesaros and Y. Ran, Generalized modular transformations in (3 + 1)D topologically ordered phases and triple linking invariant of loop braiding, Phys. Rev.X 4 (2014) 031048 [arXiv:1404.1062] [INSPIRE].
J. Wang and X.-G. Wen, Non-Abelian string and particle braiding in topological order: modular SL(3, Z ) representation and (3 + 1)-dimensional twisted gauge theory, Phys. Rev.B 91 (2015) 035134 [arXiv:1404.7854] [INSPIRE].
C. Wang and M. Levin, Braiding statistics of loop excitations in three dimensions, Phys. Rev. Lett.113 (2014) 080403 [arXiv:1403.7437] [INSPIRE].
E.P. Verlinde, Fusion rules and modular transformations in 2D conformal field theory, Nucl. Phys.B 300 (1988) 360 [INSPIRE].
U. Schreiber and K. Waldorf, Parallel transport and functors, J. Homotopy Relat. Struct.4 (2009) 187 [arXiv:0705.0452].
H. Pfeiffer, Higher gauge theory and a non-Abelian generalization of 2-form electrodynamics, Annals Phys.308 (2003) 447 [hep-th/0304074] [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1909.07937
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Bullivant, A., Delcamp, C. Excitations in strict 2-group higher gauge models of topological phases. J. High Energ. Phys. 2020, 107 (2020). https://doi.org/10.1007/JHEP01(2020)107
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP01(2020)107