Abstract
By finding rare (but not exponentially rare) large-angle deflections of partons within a jet produced in a heavy ion collision, or of such a jet itself, experimentalists can find the weakly coupled short-distance quark and gluon particles (scatterers) within the strongly coupled liquid quark-gluon plasma (QGP) produced in heavy ion collisions. This is the closest one can come to probing QGP via a scattering experiment and hence is the best available path toward learning how a strongly coupled liquid emerges from an asymptotically free gauge theory. The short-distance, particulate, structure of liquid QGP can be revealed in events in which a jet parton resolves, and scatters off, a parton from the droplet of QGP. The probability for picking up significant transverse momentum via a single scattering was calculated previously, but only in the limit of infinite parton energy which means zero angle scattering. Here, we provide a leading order perturbative QCD calculation of the Molière scattering probability for incident partons with finite energy, scattering at a large angle. We set up a thought experiment in which an incident parton with a finite energy scatters off a parton constituent within a “brick” of QGP, which we treat as if it were weakly coupled, as appropriate for scattering with large momentum transfer, and compute the probability for a parton to show up at a nonzero angle with some energy. We include all relevant channels, including those in which the parton that shows up at a large angle was kicked out of the medium as well as the Rutherford-like channel in which what is seen is the scattered incident parton. The results that we obtain will serve as inputs to future jet Monte Carlo calculations and can provide qualitative guidance for how to use future precise, high statistics, suitably differential measurements of jet modification in heavy ion collisions to find the scatterers within the QGP liquid.
Article PDF
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Avoid common mistakes on your manuscript.
References
U. Heinz and R. Snellings, Collective flow and viscosity in relativistic heavy-ion collisions, Ann. Rev. Nucl. Part. Sci. 63 (2013) 123 [arXiv:1301.2826] [INSPIRE].
P. Romatschke and U. Romatschke, Relativistic Fluid Dynamics In and Out of Equilibrium — Ten Years of Progress in Theory and Numerical Simulations of Nuclear Collisions, arXiv:1712.05815 [INSPIRE].
W. Busza, K. Rajagopal and W. van der Schee, Heavy Ion Collisions: The Big Picture and the Big Questions, Ann. Rev. Nucl. Part. Sci. 68 (2018) 339 [arXiv:1802.04801] [INSPIRE].
Y. Akiba et al., The Hot QCD White Paper: Exploring the Phases of QCD at RHIC and the LHC, arXiv:1502.02730 [INSPIRE].
Reaching for the horizon: The 2015 long range plan for nuclear science, http://science.energy.gov/~/media/np/nsac/pdf/2015LRP/2015_LRPNS_091815.pdf (2015).
NuPECC Long Range Plan 2017 Perspectives in Nuclear Physics, http://www.esf.org/fileadmin/user_upload/esf/Nupecc-LRP2017.pdf (2017).
PHENIX collaboration, An Upgrade Proposal from the PHENIX Collaboration, arXiv:1501.06197 [INSPIRE].
H. Liu, K. Rajagopal and U.A. Wiedemann, Calculating the jet quenching parameter from AdS/CFT, Phys. Rev. Lett. 97 (2006) 182301 [hep-ph/0605178] [INSPIRE].
F. D’Eramo, H. Liu and K. Rajagopal, Transverse Momentum Broadening and the Jet Quenching Parameter, Redux, Phys. Rev. D 84 (2011) 065015 [arXiv:1006.1367] [INSPIRE].
F. D’Eramo, M. Lekaveckas, H. Liu and K. Rajagopal, Momentum Broadening in Weakly Coupled quark-gluon Plasma (with a view to finding the quasiparticles within liquid quark-gluon plasma), JHEP 05 (2013) 031 [arXiv:1211.1922] [INSPIRE].
G. Molière, Theorie der Streuung schneller geladener Teilchen. I. Einzelstreuung am abgeschirmten Coulomb-Feld, Z. Naturforsch. A 2 (1947) 133.
G. Molière, Theorie der Streuung schneller geladener Teilchen. II. Mehrfach-und Vielfachstreuung, Z. Naturforsch. A 3 (1948) 78.
G. Molière, Theorie der Streuung schneller geladener Teilchen. III. Die Vielfachstreuung von Bahnspuren unter Berücksichtigung der statistichen Kopplung, Z. Naturforsch. A 10 (1955) 177.
A. Kurkela and U.A. Wiedemann, Picturing perturbative parton cascades in QCD matter, Phys. Lett. B 740 (2015) 172 [arXiv:1407.0293] [INSPIRE].
CMS collaboration, Studies of jet quenching using isolated-photon+jet correlations in PbPb and pp collisions at \( \sqrt{s_{NN}}=2.76 \) TeV, Phys. Lett. B 718 (2013) 773 [arXiv:1205.0206] [INSPIRE].
CMS collaboration, Study of jet quenching with isolated-photon+jet correlations in PbPb and pp collisions at \( \sqrt{s_{\mathrm{NN}}}=5.02 \) TeV, Phys. Lett. B 785 (2018) 14 [arXiv:1711.09738] [INSPIRE].
ATLAS collaboration, Study of photon-jet momentum correlations in Pb+Pb and pp collisions at \( \sqrt{s_{\mathrm{NN}}}=5.02 \) TeV with ATLAS, ATLAS-CONF-2016-110.
ALICE collaboration, Measurement of jet quenching with semi-inclusive hadron-jet distributions in central Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}}=2.76 \) TeV, JHEP 09 (2015) 170 [arXiv:1506.03984] [INSPIRE].
STAR collaboration, Measurements of jet quenching with semi-inclusive hadron+jet distributions in Au+Au collisions at \( \sqrt{s_{NN}}=200 \) GeV, Phys. Rev. C 96 (2017) 024905 [arXiv:1702.01108] [INSPIRE].
CMS collaboration, Study of Jet Quenching with Z + jet Correlations in Pb-Pb and pp Collisions at \( {\sqrt{s}}_{NN}=5.02 \) TeV, Phys. Rev. Lett. 119 (2017) 082301 [arXiv:1702.01060] [INSPIRE].
ALICE collaboration, First measurement of jet mass in Pb-Pb and p-Pb collisions at the LHC, Phys. Lett. B 776 (2018) 249 [arXiv:1702.00804] [INSPIRE].
CMS collaboration, Measurement of the Splitting Function in pp and Pb-Pb Collisions at \( \sqrt{s_{\mathrm{NN}}}=5.02 \) TeV, Phys. Rev. Lett. 120 (2018) 142302 [arXiv:1708.09429] [INSPIRE].
CMS collaboration, Measurement of the groomed jet mass in PbPb and pp collisions at \( \sqrt{s_{\mathrm{NN}}}=5.02 \) TeV, JHEP 10 (2018) 161 [arXiv:1805.05145] [INSPIRE].
ALICE collaboration, New results on jets and heavy flavor in heavy-ion collisions with ALICE, in 5th Large Hadron Collider Physics Conference (LHCP 2017), Shanghai, China, May 15–20, 2017 (2017) [arXiv:1709.09654] [INSPIRE].
ALICE collaboration, Medium modification of the shape of small-radius jets in central Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}}=2.76 \) TeV, JHEP 10 (2018) 139 [arXiv:1807.06854] [INSPIRE].
J. Casalderrey-Solana, D.C. Gulhan, J.G. Milhano, D. Pablos and K. Rajagopal, A Hybrid Strong/Weak Coupling Approach to Jet Quenching, JHEP 10 (2014) 019 [Erratum ibid. 09 (2015) 175] [arXiv:1405.3864] [INSPIRE].
J. Casalderrey-Solana, D.C. Gulhan, J.G. Milhano, D. Pablos and K. Rajagopal, Predictions for Boson-Jet Observables and Fragmentation Function Ratios from a Hybrid Strong/Weak Coupling Model for Jet Quenching, JHEP 03 (2016) 053 [arXiv:1508.00815] [INSPIRE].
J. Casalderrey-Solana, D. Gulhan, G. Milhano, D. Pablos and K. Rajagopal, Angular Structure of Jet Quenching Within a Hybrid Strong/Weak Coupling Model, JHEP 03 (2017) 135 [arXiv:1609.05842] [INSPIRE].
Z. Hulcher, D. Pablos and K. Rajagopal, Resolution Effects in the Hybrid Strong/Weak Coupling Model, JHEP 03 (2018) 010 [arXiv:1707.05245] [INSPIRE].
K. Zapp, J. Stachel and U.A. Wiedemann, A Local Monte Carlo implementation of the non-abelian Landau-Pomerantschuk-Migdal effect, Phys. Rev. Lett. 103 (2009) 152302 [arXiv:0812.3888] [INSPIRE].
K. Zapp, G. Ingelman, J. Rathsman, J. Stachel and U.A. Wiedemann, A Monte Carlo Model for ‘Jet Quenching’, Eur. Phys. J. C 60 (2009) 617 [arXiv:0804.3568] [INSPIRE].
K.C. Zapp, F. Krauss and U.A. Wiedemann, A perturbative framework for jet quenching, JHEP 03 (2013) 080 [arXiv:1212.1599] [INSPIRE].
K.C. Zapp, JEWEL 2.0.0: directions for use, Eur. Phys. J. C 74 (2014) 2762 [arXiv:1311.0048] [INSPIRE].
K.C. Zapp, Geometrical aspects of jet quenching in JEWEL, Phys. Lett. B 735 (2014) 157 [arXiv:1312.5536] [INSPIRE].
R. Kunnawalkam Elayavalli and K.C. Zapp, Medium response in JEWEL and its impact on jet shape observables in heavy ion collisions, JHEP 07 (2017) 141 [arXiv:1707.01539] [INSPIRE].
B. Schenke, C. Gale and S. Jeon, MARTINI: An Event generator for relativistic heavy-ion collisions, Phys. Rev. C 80 (2009) 054913 [arXiv:0909.2037] [INSPIRE].
X.-N. Wang and Y. Zhu, Medium Modification of γ-jets in High-energy Heavy-ion Collisions, Phys. Rev. Lett. 111 (2013) 062301 [arXiv:1302.5874] [INSPIRE].
Y. He, T. Luo, X.-N. Wang and Y. Zhu, Linear Boltzmann Transport for Jet Propagation in the quark-gluon Plasma: Elastic Processes and Medium Recoil, Phys. Rev. C 91 (2015) 054908 [Erratum ibid. C 97 (2018) 019902] [arXiv:1503.03313] [INSPIRE].
JETSCAPE collaboration, Multistage Monte-Carlo simulation of jet modification in a static medium, Phys. Rev. C 96 (2017) 024909 [arXiv:1705.00050] [INSPIRE].
JET collaboration, Extracting the jet transport coefficient from jet quenching in high-energy heavy-ion collisions, Phys. Rev. C 90 (2014) 014909 [arXiv:1312.5003] [INSPIRE].
STAR collaboration, Jet-Hadron Correlations in \( \sqrt{s_{NN}}=200 \) GeV p + p and Central Au + Au Collisions, Phys. Rev. Lett. 112 (2014) 122301 [arXiv:1302.6184] [INSPIRE].
CMS collaboration, Modification of jet shapes in PbPb collisions at \( \sqrt{s_{NN}}=2.76 \) TeV, Phys. Lett. B 730 (2014) 243 [arXiv:1310.0878] [INSPIRE].
CMS collaboration, Measurement of transverse momentum relative to dijet systems in PbPb and pp collisions at \( \sqrt{s_{\mathrm{NN}}}=2.76 \) TeV, JHEP 01 (2016) 006 [arXiv:1509.09029] [INSPIRE].
CMS collaboration, Correlations between jets and charged particles in PbPb and pp collisions at \( \sqrt{s_{\mathrm{NN}}}=2.76 \) TeV, JHEP 02 (2016) 156 [arXiv:1601.00079] [INSPIRE].
CMS collaboration, Jet properties in PbPb and pp collisions at \( \sqrt{s_{\mathrm{NN}}}=5.02 \) TeV, JHEP 05 (2018) 006 [arXiv:1803.00042] [INSPIRE].
L. Chen, G.-Y. Qin, S.-Y. Wei, B.-W. Xiao and H.-Z. Zhang, Probing Transverse Momentum Broadening via Dihadron and Hadron-jet Angular Correlations in Relativistic Heavy-ion Collisions, Phys. Lett. B 773 (2017) 672 [arXiv:1607.01932] [INSPIRE].
A.H. Mueller, B. Wu, B.-W. Xiao and F. Yuan, Probing Transverse Momentum Broadening in Heavy Ion Collisions, Phys. Lett. B 763 (2016) 208 [arXiv:1604.04250] [INSPIRE].
A.H. Mueller, B. Wu, B.-W. Xiao and F. Yuan, Medium Induced Transverse Momentum Broadening in Hard Processes, Phys. Rev. D 95 (2017) 034007 [arXiv:1608.07339] [INSPIRE].
G. Milhano, U.A. Wiedemann and K.C. Zapp, Sensitivity of jet substructure to jet-induced medium response, Phys. Lett. B 779 (2018) 409 [arXiv:1707.04142] [INSPIRE].
T. Luo, S. Cao, Y. He and X.-N. Wang, Multiple jets and γ-jet correlation in high-energy heavy-ion collisions, Phys. Lett. B 782 (2018) 707 [arXiv:1803.06785] [INSPIRE].
Y. Tachibana and T. Hirano, Momentum transport away from a jet in an expanding nuclear medium, Phys. Rev. C 90 (2014) 021902 [arXiv:1402.6469] [INSPIRE].
S. Floerchinger and K.C. Zapp, Hydrodynamics and Jets in Dialogue, Eur. Phys. J. C 74 (2014) 3189 [arXiv:1407.1782] [INSPIRE].
Y. Tachibana and T. Hirano, Interplay between Mach cone and radial expansion and its signal in γ-jet events, Phys. Rev. C 93 (2016) 054907 [arXiv:1510.06966] [INSPIRE].
S. Cao, T. Luo, G.-Y. Qin and X.-N. Wang, Linearized Boltzmann transport model for jet propagation in the quark-gluon plasma: Heavy quark evolution, Phys. Rev. C 94 (2016) 014909 [arXiv:1605.06447] [INSPIRE].
Y. Tachibana, N.-B. Chang and G.-Y. Qin, Full jet in quark-gluon plasma with hydrodynamic medium response, Phys. Rev. C 95 (2017) 044909 [arXiv:1701.07951] [INSPIRE].
J. Casalderrey-Solana, J.G. Milhano and U.A. Wiedemann, Jet Quenching via Jet Collimation, J. Phys. G 38 (2011) 035006 [arXiv:1012.0745] [INSPIRE].
J.G. Milhano and K.C. Zapp, Origins of the di-jet asymmetry in heavy ion collisions, Eur. Phys. J. C 76 (2016) 288 [arXiv:1512.08107] [INSPIRE].
P.M. Chesler and K. Rajagopal, On the Evolution of Jet Energy and Opening Angle in Strongly Coupled Plasma, JHEP 05 (2016) 098 [arXiv:1511.07567] [INSPIRE].
K. Rajagopal, A.V. Sadofyev and W. van der Schee, Evolution of the jet opening angle distribution in holographic plasma, Phys. Rev. Lett. 116 (2016) 211603 [arXiv:1602.04187] [INSPIRE].
J. Brewer, K. Rajagopal, A. Sadofyev and W. Van Der Schee, Evolution of the Mean Jet Shape and Dijet Asymmetry Distribution of an Ensemble of Holographic Jets in Strongly Coupled Plasma, JHEP 02 (2018) 015 [arXiv:1710.03237] [INSPIRE].
P.B. Arnold and C. Dogan, QCD Splitting/Joining Functions at Finite Temperature in the Deep LPM Regime, Phys. Rev. D 78 (2008) 065008 [arXiv:0804.3359] [INSPIRE].
P.B. Arnold, G.D. Moore and L.G. Yaffe, Effective kinetic theory for high temperature gauge theories, JHEP 01 (2003) 030 [hep-ph/0209353] [INSPIRE].
G.D. Moore, Transport coefficients in large N(f) gauge theory: Testing hard thermal loops, JHEP 05 (2001) 039 [hep-ph/0104121] [INSPIRE].
P.B. Arnold, G.D. Moore and L.G. Yaffe, Transport coefficients in high temperature gauge theories. 2. Beyond leading log, JHEP 05 (2003) 051 [hep-ph/0302165] [INSPIRE].
G.D. Moore and D. Teaney, How much do heavy quarks thermalize in a heavy ion collision?, Phys. Rev. C 71 (2005) 064904 [hep-ph/0412346] [INSPIRE].
P. Aurenche, F. Gelis and H. Zaraket, A Simple sum rule for the thermal gluon spectral function and applications, JHEP 05 (2002) 043 [hep-ph/0204146] [INSPIRE].
R.J. Fries, B. Müller and D.K. Srivastava, High-energy photons from passage of jets through quark gluon plasma, Phys. Rev. Lett. 90 (2003) 132301 [nucl-th/0208001] [INSPIRE].
Particle Data Group collaboration, Review of Particle Physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].
G. Baym, H. Monien, C.J. Pethick and D.G. Ravenhall, Transverse Interactions and Transport in Relativistic quark-gluon and Electromagnetic Plasmas, Phys. Rev. Lett. 64 (1990) 1867 [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1808.03250
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
D’Eramo, F., Rajagopal, K. & Yin, Y. Molière scattering in quark-gluon plasma: finding point-like scatterers in a liquid. J. High Energ. Phys. 2019, 172 (2019). https://doi.org/10.1007/JHEP01(2019)172
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP01(2019)172