Skip to main content
Log in

Exploring curved superspace (II)

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We extend our previous analysis of Riemannian four-manifolds \( \mathcal{M} \) admitting rigid supersymmetry to \( \mathcal{N} \) = 1 theories that do not possess a U(1) R symmetry. With one exception, we find that \( \mathcal{M} \) must be a Hermitian manifold. However, the presence of supersymmetry imposes additional restrictions. For instance, a supercharge that squares to zero exists, if the canonical bundle of the Hermitian manifold \( \mathcal{M} \) admits a nowhere vanishing, holomorphic section. This requirement can be slightly relaxed if \( \mathcal{M} \) is a torus bundle over a Riemann surface, in which case we obtain a supercharge that squares to a complex Killing vector. We also analyze the conditions for the presence of more than one supercharge. The exceptional case occurs when \( \mathcal{M} \) is a warped product S 3 × \( \mathbb{R} \), where the radius of the round S 3 is allowed to vary along \( \mathbb{R} \). Such manifolds admit two supercharges that generate the superalgebra OSp(1|2). If the S 3 smoothly shrinks to zero at two points, we obtain a squashed four-sphere, which is not a Hermitian manifold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Witten, Topological quantum field theory, Commun. Math. Phys. 117 (1988) 353 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. C. Romelsberger, Counting chiral primaries in N = 1, D = 4 superconformal field theories, Nucl. Phys. B 747 (2006) 329 [hep-th/0510060] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. A. Kapustin, B. Willett and I. Yaakov, Exact results for Wilson loops in superconformal Chern-Simons theories with matter, JHEP 03 (2010) 089 [arXiv:0909.4559] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. D.L. Jafferis, The exact superconformal R-symmetry extremizes Z, JHEP 05 (2012) 159 [arXiv:1012.3210] [INSPIRE].

    Article  ADS  Google Scholar 

  6. N. Hama, K. Hosomichi and S. Lee, Notes on SUSY gauge theories on three-sphere, JHEP 03 (2011) 127 [arXiv:1012.3512] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. C. Closset, T.T. Dumitrescu, G. Festuccia, Z. Komargodski and N. Seiberg, Contact terms, unitarity and F-maximization in three-dimensional superconformal theories, JHEP 10 (2012) 053 [arXiv:1205.4142] [INSPIRE].

    Article  ADS  Google Scholar 

  8. C. Closset, T.T. Dumitrescu, G. Festuccia, Z. Komargodski and N. Seiberg, Comments on Chern-Simons contact terms in three dimensions, JHEP 09 (2012) 091 [arXiv:1206.5218] [INSPIRE].

    Article  ADS  Google Scholar 

  9. T.T. Dumitrescu, G. Festuccia and N. Seiberg, Exploring curved superspace, JHEP 08 (2012) 141 [arXiv:1205.1115] [INSPIRE].

    Article  ADS  Google Scholar 

  10. C. Klare, A. Tomasiello and A. Zaffaroni, Supersymmetry on curved spaces and holography, JHEP 08 (2012) 061 [arXiv:1205.1062] [INSPIRE].

    Article  ADS  Google Scholar 

  11. G. Festuccia and N. Seiberg, Rigid supersymmetric theories in curved superspace, JHEP 06 (2011) 114 [arXiv:1105.0689] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. B. Jia and E. Sharpe, Rigidly supersymmetric gauge theories on curved superspace, JHEP 04 (2012) 139 [arXiv:1109.5421] [INSPIRE].

    Article  ADS  Google Scholar 

  13. H. Samtleben and D. Tsimpis, Rigid supersymmetric theories in 4D Riemannian space, JHEP 05 (2012) 132 [arXiv:1203.3420] [INSPIRE].

    Article  ADS  Google Scholar 

  14. J.T. Liu, L.A. Pando Zayas and D. Reichmann, Rigid supersymmetric backgrounds of minimal off-shell supergravity, JHEP 10 (2012) 034 [arXiv:1207.2785] [INSPIRE].

    Article  ADS  Google Scholar 

  15. I.L. Buchbinder and S.M. Kuzenko, Ideas and methods of supersymmetry and supergravity: a walk through superspace, IOP, Bristol U.K. (1995).

    Book  MATH  Google Scholar 

  16. Z. Komargodski and N. Seiberg, Comments on supercurrent multiplets, supersymmetric field theories and supergravity, JHEP 07 (2010) 017 [arXiv:1002.2228] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. T.T. Dumitrescu and N. Seiberg, Supercurrents and brane currents in diverse dimensions, JHEP 07 (2011) 095 [arXiv:1106.0031] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. S. Gates, M.T. Grisaru, M. Roček and W. Siegel, Superspace or one thousand and one lessons in supersymmetry, Front. Phys. 58 (1983) 1 [hep-th/0108200] [INSPIRE].

    Google Scholar 

  19. M.F. Sohnius and P.C. West, An alternative minimal off-shell version of N = 1 supergravity, Phys. Lett. B 105 (1981) 353 [INSPIRE].

    ADS  Google Scholar 

  20. M. Sohnius and P.C. West, The tensor calculus and matter coupling of the alternative minimal auxiliary field formulation of N = 1 supergravity, Nucl. Phys. B 198 (1982) 493 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. S. Ferrara and B. Zumino, Transformation properties of the supercurrent, Nucl. Phys. B 87 (1975) 207 [INSPIRE].

    Article  ADS  Google Scholar 

  22. G. Girardi, R. Grimm, M. Muller and J. Wess, Antisymmetric tensor gauge potential in curved superspace and a (16 + 16) supergravity multiplet, Phys. Lett. B 147 (1984) 81 [INSPIRE].

    ADS  Google Scholar 

  23. W. Lang, J. Louis and B.A. Ovrut, (16 + 16) supergravity coupled to matter: the low-energy limit of the superstring, Phys. Lett. B 158 (1985) 40 [INSPIRE].

    ADS  Google Scholar 

  24. K. Stelle and P.C. West, Minimal auxiliary fields for supergravity, Phys. Lett. B 74 (1978) 330 [INSPIRE].

    ADS  Google Scholar 

  25. S. Ferrara and P. van Nieuwenhuizen, The auxiliary fields of supergravity, Phys. Lett. B 74 (1978) 333 [INSPIRE].

    ADS  Google Scholar 

  26. D. Cassani, C. Klare, D. Martelli, A. Tomasiello and A. Zaffaroni, Supersymmetry in Lorentzian curved spaces and holography, arXiv:1207.2181 [INSPIRE].

  27. H.B. Lawson and M.L. Michelsohn, Spin geometry, Princeton mathematical series 38, Princeton University Press, Princeton U.S.A. (1989).

  28. W. Barth, C. Peters and A. Van de Ven, Compact complex surfaces, Springer, Germany (1984).

    Book  MATH  Google Scholar 

  29. C.P. Boyer, A note on hyper-Hermitian four-manifolds, Proc. Amer. Math. Soc. 102 (1988) 157.

    MathSciNet  MATH  Google Scholar 

  30. J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton University Press, Princeton U.S.A. (1992).

    Google Scholar 

  31. Y. Kosmann, Dérivées de Lie des spineurs (in French), Ann. Matemat. Pura Appl. 91 (1972) 317395.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas T. Dumitrescu.

Additional information

ArXiv ePrint: 1209.5408

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dumitrescu, T.T., Festuccia, G. Exploring curved superspace (II). J. High Energ. Phys. 2013, 72 (2013). https://doi.org/10.1007/JHEP01(2013)072

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2013)072

Keywords

Navigation