Skip to main content
Log in

Flavored orbifold GUT — an SO(10) × S 4 model

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Orbifold grand unified theories (GUTs) solve several problems in GUT model building. Therefore, it is intriguing to investigate similar constructions in the flavor context. In this paper, we propose that a flavor symmetry might emerge due to orbifold compactification of one orbifold and broken by boundary conditions of another orbifold. The combination of the orbifold parities in gauge and flavor space determines the zero modes. We demonstrate the construction in a supersymmetric (SUSY) SO(10) × S 4 orbifold GUT model, which predicts the tribimaximal mixing at leading order in the lepton sector as well as the Cabibbo angle in the quark sector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P.F. Harrison, D.H. Perkins and W.G. Scott, Tri-bimaximal mixing and the neutrino oscillation data, Phys. Lett. B 530 (2002) 167 [hep-ph/0202074] [SPIRES].

    ADS  Google Scholar 

  2. A. Adulpravitchai, A. Blum and M. Lindner, Non-Abelian Discrete Groups from the Breaking of Continuous Flavor Symmetries, JHEP 09 (2009) 018 [arXiv:0907.2332] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  3. J. Berger and Y. Grossman, Model of leptons from SO(3) → A 4, JHEP 02 (2010) 071 [arXiv:0910.4392] [SPIRES].

    Article  ADS  Google Scholar 

  4. T. Kobayashi, S. Raby and R.-J. Zhang, Searching for realistic 4d string models with a Pati-Salam symmetry: Orbifold grand unified theories from heterotic string compactification on a Z (6) orbifold, Nucl. Phys. B 704 (2005) 3 [hep-ph/0409098] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  5. T. Kobayashi, H.P. Nilles, F. Ploger, S. Raby and M. Ratz, Stringy origin of non-Abelian discrete flavor symmetries, Nucl. Phys. B 768 (2007) 135 [hep-ph/0611020] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  6. P. Ko, T. Kobayashi, J.-h. Park and S. Raby, String-derived D4 flavor symmetry and phenomenological implications, Phys. Rev. D 76 (2007) 035005 [arXiv:0704.2807] [SPIRES].

    ADS  Google Scholar 

  7. H. Abe, K.-S. Choi, T. Kobayashi and H. Ohki, Non-Abelian Discrete Flavor Symmetries from Magnetized/Intersecting Brane Models, Nucl. Phys. B 820 (2009) 317 [arXiv:0904.2631] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  8. H. Abe, K.-S. Choi, T. Kobayashi and H. Ohki, Flavor structure from magnetic fluxes and non-Abelian Wilson lines, Phys. Rev. D 81 (2010) 126003 [arXiv:1001.1788] [SPIRES].

    ADS  Google Scholar 

  9. L.J. Dixon, D. Friedan, E.J. Martinec and S.H. Shenker, The Conformal Field Theory of Orbifolds, Nucl. Phys. B 282 (1987) 13 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  10. T. Watari and T. Yanagida, Geometric origin of large lepton mixing in a higher dimensional spacetime, Phys. Lett. B 544 (2002) 167 [hep-ph/0205090] [SPIRES].

    ADS  Google Scholar 

  11. T. Watari and T. Yanagida, Higher dimensional supersymmetry as an origin of the three families for quarks and leptons, Phys. Lett. B 532 (2002) 252 [hep-ph/0201086] [SPIRES].

    ADS  Google Scholar 

  12. G. Altarelli, F. Feruglio and Y. Lin, Tri-bimaximal neutrino mixing from orbifolding, Nucl. Phys. B 775 (2007) 31 [hep-ph/0610165] [SPIRES].

    Article  ADS  Google Scholar 

  13. A. Adulpravitchai, A. Blum and M. Lindner, Non-Abelian Discrete Flavor Symmetries from T 2 /Z N Orbifolds, JHEP 07 (2009) 053 [arXiv:0906.0468] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  14. Y. Kawamura, Triplet-doublet splitting, proton stability and extra dimension, Prog. Theor. Phys. 105 (2001) 999 [hep-ph/0012125] [SPIRES].

    Article  ADS  Google Scholar 

  15. T.J. Burrows and S.F. King, A 4 Family Symmetry from SU(5) SUSY GUT s in 6d, Nucl. Phys. B 835 (2010) 174 [arXiv:0909.1433] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  16. J. Scherk and J.H. Schwarz, Spontaneous Breaking of Supersymmetry Through Dimensional Reduction, Phys. Lett. B 82 (1979) 60 [SPIRES].

    ADS  Google Scholar 

  17. J. Scherk and J.H. Schwarz, How to Get Masses from Extra Dimensions, Nucl. Phys. B 153 (1979) 61 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  18. L.E. Ibáñez, H.P. Nilles and F. Quevedo, Orbifolds and Wilson Lines, Phys. Lett. B 187 (1987) 25 [SPIRES].

    ADS  Google Scholar 

  19. N. Haba, A. Watanabe and K. Yoshioka, Twisted flavors and tri/bi-maximal neutrino mixing, Phys. Rev. Lett. 97 (2006) 041601 [hep-ph/0603116] [SPIRES].

    Article  ADS  Google Scholar 

  20. G. Seidl, Unified model of fermion masses with Wilson line flavor symmetry breaking, Phys. Rev. D 81 (2010) 025004 [arXiv:0811.3775] [SPIRES].

    ADS  Google Scholar 

  21. T. Kobayashi, Y. Omura and K. Yoshioka, Flavor Symmetry Breaking and Vacuum Alignment on Orbifolds, Phys. Rev. D 78 (2008) 115006 [arXiv:0809.3064] [SPIRES].

    ADS  Google Scholar 

  22. S. Pakvasa and H. Sugawara, Mass of the t Quark in SU(2) × U(1), Phys. Lett. B 82 (1979) 105 [SPIRES].

    ADS  Google Scholar 

  23. Y. Yamanaka, H. Sugawara and S. Pakvasa, Permutation symmetries and the fermion mass matrix, Phys. Rev. D 25 (1982) 1895 [SPIRES].

    ADS  Google Scholar 

  24. T. Brown, N. Deshpande, S. Pakvasa and H. Sugawara, CP nonconservation and rare processes in S 4 model of permutation symmetry, Phys. Lett. B 141 (1984) 95 [SPIRES].

    ADS  Google Scholar 

  25. T. Brown, S. Pakvasa, H. Sugawara and Y. Yamanaka, Neutrino masses, mixing and oscillations in S 4 model of permutation symmetry, Phys. Rev. D 30 (1984) 255 [SPIRES].

    ADS  Google Scholar 

  26. D.-G. Lee and R.N. Mohapatra, An SO(10) × S 4 scenario for naturally degenerate neutrinos, Phys. Lett. B 329 (1994) 463 [hep-ph/9403201] [SPIRES].

    ADS  Google Scholar 

  27. E. Ma, Neutrino mass matrix from S 4 symmetry, Phys. Lett. B 632 (2006) 352 [hep-ph/0508231] [SPIRES].

    ADS  Google Scholar 

  28. C. Hagedorn, M. Lindner and R.N. Mohapatra, S 4 flavor symmetry and fermion masses: Towards a grand unified theory of flavor, JHEP 06 (2006) 042 [hep-ph/0602244] [SPIRES].

    Article  ADS  Google Scholar 

  29. Y. Cai and H.-B. Yu, An SO(10) GUT Model with S4 Flavor Symmetry, Phys. Rev. D 74 (2006) 115005 [hep-ph/0608022] [SPIRES].

    ADS  Google Scholar 

  30. F. Caravaglios and S. Morisi, Gauge boson families in grand unified theories of fermion masses: E 46 xS 4, Int. J. Mod. Phys. A 22 (2007) 2469 [hep-ph/0611078] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  31. H. Zhang, Flavor S 4 × Z (2) symmetry and neutrino mixing, Phys. Lett. B 655 (2007) 132 [hep-ph/0612214] [SPIRES].

    ADS  Google Scholar 

  32. Y. Koide, S 4 Flavor Symmetry Embedded into SU(3) and Lepton Masses and Mixing, JHEP 08 (2007) 086 [arXiv:0705.2275] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  33. M.K. Parida, Intermediate left-right gauge symmetry, unification of couplings and fermion masses in SUSY SO(10) × S 4, Phys. Rev. D 78 (2008) 053004 [arXiv:0804.4571] [SPIRES].

    ADS  Google Scholar 

  34. C.S. Lam, The Unique Horizontal Symmetry of Leptons, Phys. Rev. D 78 (2008) 073015 [arXiv:0809.1185] [SPIRES].

    ADS  Google Scholar 

  35. F. Bazzocchi and S. Morisi, S4 as a natural flavor symmetry for lepton mixing, Phys. Rev. D 80 (2009) 096005 [arXiv:0811.0345] [SPIRES].

    ADS  Google Scholar 

  36. H. Ishimori, Y. Shimizu and M. Tanimoto, S4 Flavor Symmetry of Quarks and Leptons in SU(5) GUT, Prog. Theor. Phys. 121 (2009) 769 [arXiv:0812.5031] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  37. F. Bazzocchi, L. Merlo and S. Morisi, Phenomenological Consequences of See-Saw in S4 Based Models, Phys. Rev. D 80 (2009) 053003 [arXiv:0902.2849] [SPIRES].

    ADS  Google Scholar 

  38. G. Altarelli, F. Feruglio and L. Merlo, Revisiting Bimaximal Neutrino Mixing in a Model with S4 Discrete Symmetry, JHEP 05 (2009) 020 [arXiv:0903.1940] [SPIRES].

    Article  ADS  Google Scholar 

  39. H. Ishimori, Y. Shimizu and M. Tanimoto, S4 Flavor Model of Quarks and Leptons, Prog. Theor. Phys. Suppl. 180 (2010) 61 [arXiv:0904.2450] [SPIRES].

    Article  ADS  Google Scholar 

  40. W. Grimus, L. Lavoura and P.O. Ludl, Is S4 the horizontal symmetry of tri-bimaximal lepton mixing?, J. Phys. G 36 (2009) 115007 [arXiv:0906.2689] [SPIRES].

    ADS  Google Scholar 

  41. G.-J. Ding, Fermion Masses and Flavor Mixings in a Model with S 4 Flavor Symmetry, Nucl. Phys. B 827 (2010) 82 [arXiv:0909.2210] [SPIRES].

    Article  ADS  Google Scholar 

  42. D. Meloni, A See-Saw S 4 model for fermion masses and mixings, J. Phys. G 37 (2010) 055201 [arXiv:0911.3591] [SPIRES].

    ADS  Google Scholar 

  43. S. Morisi and E. Peinado, An S4 model for quarks and leptons with maximal atmospheric angle, Phys. Rev. D 81 (2010) 085015 [arXiv:1001.2265] [SPIRES].

    ADS  Google Scholar 

  44. B. Dutta, Y. Mimura and R.N. Mohapatra, An SO(10) Grand Unified Theory of Flavor, JHEP 05 (2010) 034 [arXiv:0911.2242] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  45. R. Gatto, G. Sartori and M. Tonin, Weak Selfmasses, Cabibbo Angle and Broken SU(2) × U(2), Phys. Lett. B 28 (1968) 128 [SPIRES].

    ADS  Google Scholar 

  46. R.J. Oakes, SU(2) × SU(2) breaking and the Cabibbo angle, Phys. Lett. B 29 (1969) 683 [SPIRES].

    ADS  Google Scholar 

  47. E. Ponton and E. Poppitz, Casimir energy and radius stabilization in five and six dimensional orbifolds, JHEP 06 (2001) 019 [hep-ph/0105021] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  48. W. Buchmüller, R. Catena and K. Schmidt-Hoberg, Enhanced Symmetries of Orbifolds from Moduli Stabilization, Nucl. Phys. B 821 (2009) 1 [arXiv:0902.4512] [SPIRES].

    Article  ADS  Google Scholar 

  49. T. Asaka, W. Buchm¨uller and L. Covi, Exceptional coset spaces and unification in six dimensions, Phys. Lett. B 540 (2002) 295 [hep-ph/0204358] [SPIRES].

  50. L.J. Hall, Y. Nomura, T. Okui and D. Tucker-Smith, SO(10) unified theories in six dimensions, Phys. Rev. D 65 (2002) 035008 [hep-ph/0108071] [SPIRES].

    ADS  Google Scholar 

  51. N. Arkani-Hamed, T. Gregoire and J.G. Wacker, Higher dimensional supersymmetry in 4D superspace, JHEP 03 (2002) 055 [hep-th/0101233] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  52. A. Hebecker and J. March-Russell, The structure of GUT breaking by orbifolding, Nucl. Phys. B 625 (2002) 128 [hep-ph/0107039] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  53. T. Asaka, W. Buchmüller and L. Covi, Bulk and brane anomalies in six dimensions, Nucl. Phys. B 648 (2003) 231 [hep-ph/0209144] [SPIRES].

    Article  ADS  Google Scholar 

  54. E.A. Mirabelli and M.E. Peskin, Transmission of supersymmetry breaking from a 4-dimensional boundary, Phys. Rev. D 58 (1998) 065002 [hep-th/9712214] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  55. T. Asaka, W. Buchmüller and L. Covi, Gauge unification in six dimensions, Phys. Lett. B 523 (2001) 199 [hep-ph/0108021] [SPIRES].

    ADS  Google Scholar 

  56. F. Bazzocchi, L. Merlo and S. Morisi, Fermion Masses and Mixings in a S4-based Model, Nucl. Phys. B 816 (2009) 204 [arXiv:0901.2086] [SPIRES].

    Article  ADS  Google Scholar 

  57. K.R. Dienes, E. Dudas and T. Gherghetta, Extra spacetime dimensions and unification, Phys. Lett. B 436 (1998) 55 [hep-ph/9803466] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  58. K.R. Dienes, E. Dudas and T. Gherghetta, Grand unification at intermediate mass scales through extra dimensions, Nucl. Phys. B 537 (1999) 47 [hep-ph/9806292] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  59. L. Calibbi, L. Ferretti, A. Romanino and R. Ziegler, Gauge coupling unification, the GUT scale and magic fields, Phys. Lett. B 672 (2009) 152 [arXiv:0812.0342] [SPIRES].

    ADS  Google Scholar 

  60. H. Georgi and C. Jarlskog, A New Lepton-Quark Mass Relation in a Unified Theory, Phys. Lett. B 86 (1979) 297 [SPIRES].

    ADS  Google Scholar 

  61. B. Dutta, Y. Mimura and R.N. Mohapatra, Origin of Quark-Lepton Flavor in SO(10) with Type II Seesaw, Phys. Rev. D 80 (2009) 095021 [arXiv:0910.1043] [SPIRES].

    ADS  Google Scholar 

  62. S.F. King, Predicting neutrino parameters from SO(3) family symmetry and quark-lepton unification, JHEP 08 (2005) 105 [hep-ph/0506297] [SPIRES].

    Article  ADS  Google Scholar 

  63. I. Masina, A maximal atmospheric mixing from a maximal CP-violating phase, Phys. Lett. B 633 (2006) 134 [hep-ph/0508031] [SPIRES].

    ADS  Google Scholar 

  64. S. Antusch and S.F. King, Charged lepton corrections to neutrino mixing angles and CP phases revisited, Phys. Lett. B 631 (2005) 42 [hep-ph/0508044] [SPIRES].

    ADS  Google Scholar 

  65. S. Antusch, J. Kersten, M. Lindner and M. Ratz, Running neutrino masses, mixings and CP phases: Analytical results and phenomenological consequences, Nucl. Phys. B 674 (2003) 401 [hep-ph/0305273] [SPIRES].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Schmidt.

Additional information

ArXiv ePrint:1001.3172

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adulpravitchai, A., Schmidt, M.A. Flavored orbifold GUT — an SO(10) × S 4 model. J. High Energ. Phys. 2011, 106 (2011). https://doi.org/10.1007/JHEP01(2011)106

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2011)106

Keywords

Navigation