Skip to main content
Log in

Influence of molecular motions on NQR echoes

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The influence of thermal molecular motions on spin echo decay in pure nuclear quadrupole resonance (NQR) is considered. Our calculations show that the Hahn echo decay is caused by dipole-dipole interaction of the nuclear spins and is strongly affected by molecular mobility that can lead to the shortening of the echo decay with increased temperature. Slow molecular motion yields an exponential τ3 time dependence, while fast motion yields an exponential decay. The outlined theory allows us to explain an unusual shortening of the35Cl NQR echo decay on heating in thiourea-C2Cl6 inclusion compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Dehmelt H.G., Krüger H.: Naturwissenschaften37, 111 (1950); ibid. Naturwissenschaften38, 921 (1951)

    Article  ADS  Google Scholar 

  2. Ayant Y.: C. R.233, 949 (1951)

    MathSciNet  Google Scholar 

  3. Hahn E.L., Herzog B.: Phys. Rev.93, 639 (1954)

    Article  ADS  Google Scholar 

  4. Bloom M., Norberg R.: Phys. Rev.93, 638 (1954)

    Article  ADS  Google Scholar 

  5. Bloom M.: Phys. Rev.94, 1396 (1954)

    Article  ADS  Google Scholar 

  6. Das T.P., Saha A.K.: Phys. Rev.98, 516 (1955)

    Article  ADS  Google Scholar 

  7. Ayant Y.: Ann. Phys. (Paris)10, 487 (1955)

    Google Scholar 

  8. Das T.P., Hahn E.L.: Nuclear Quadrupole Resonance Spectroscopy. New York: Academic Press 1958.

    Google Scholar 

  9. Woessner D.E., Gutowsky H.S.: J. Chem. Phys.39 440 (1963)

    Article  ADS  Google Scholar 

  10. Isbister D.J., Krishnan M.S., Sanctuary B.C.: Mol. Phys.86, 1517 (1955)

    Article  ADS  Google Scholar 

  11. Pratt J.C.: Mol. Phys.34, 539 (1977)

    Article  ADS  Google Scholar 

  12. Powles J.G., Mansfield P.: Phys. Rev. Lett.2, 58–59 (1962)

    Google Scholar 

  13. Powles J.G., Strange J.H.: Proc. Phys. Soc. Lohd.82, 6–15 (1963)

    Article  Google Scholar 

  14. Spiess H.W., Sillescu H.: J. Magn. Res.42, 381–389 (1981)

    Google Scholar 

  15. Sergeev N.A., Ryabushkin D.S., Moskvich Yu.N.: Phys. Lett.104A, 97–99 (1984)

    ADS  Google Scholar 

  16. Ryabushkin D.S., Moskvich Yu.N., Sergeev N.A.: Phys. Lett.121A, 357–361 (1987)

    ADS  Google Scholar 

  17. Sergeev N.A., Ryabushkin D.S., Kolpaschikova N.P.: Phys. Lett.152, 87–88 (1991)

    Article  Google Scholar 

  18. Abragam A.: The Principles of Nuclear Magnetism. Oxford: Clarendon Press 1961.

    Google Scholar 

  19. Abragam A., Kambe K.: Phys. Rev.97, 1699 (1955)

    Article  Google Scholar 

  20. Slichter C.P.: Principles of Magnetic Resonance. Berlin: Springer 1980.

    Google Scholar 

  21. Gardner W.A.: Introduction to Random Processes. New York: MacMillan 1986.

    MATH  Google Scholar 

  22. Sobczyk K.: Differential Equations with Application to Physics and Engineering. Amsterdam: Kluwer Academic 1991.

    Google Scholar 

  23. Salikhov K.M., Semenov A.G., Tsvetkov Yu.D.: Electron Spin Echo and Its Application Novosibirsk: Nauka 1972.

    Google Scholar 

  24. Ailion D.C., Norcross J.A.: Phys. Rev. Lett.74, 2383 (1995)

    Article  ADS  Google Scholar 

  25. Papavassiliou G., Leventis A., Milia F., Dolinsek J.: Phys. Rev. Lett.74, 2387 (1995); Papavassiliou G., Fardis M., Leventis A., Milia F., Dolinsek J., Apih T., Mikac M.U.: Phys. Rev. B55, 12161 (1997)

    Article  ADS  Google Scholar 

  26. Takemoto K., Sonoda N. in: Inclusion Compounds (Atwood J.L., Davies J.E.D., MacNicol D.D., eds.), vol. 2, p. 47. New York: Academic Press 1984.

    Google Scholar 

  27. Hollingsworth M.D., Harris K.D.M. in: Comprehensive Supramolecular Chemistry (MacNicol D.D., Toda F., Bishop R., eds.), vol. 6. New York: Pergamon Press 1996.

    Google Scholar 

  28. Panich A.M., Semenov A.R., Chekhova G.N., Krieger Yu. H., Goren S.D.: Solid State Commun.110, 363 (1999)

    Article  ADS  Google Scholar 

  29. Chekhova G.N., Goren S.D., Krieger Ju.H., Linsky D., Lusternik V., Panich A.M., Semenov A.R., Voronel A.: Z. Naturforsch.55a, 335–338 (2000)

    Google Scholar 

  30. Mori H.: Prog. Theor. Phys.33, 423 (1965); ibid. Mori, H.: Prog. Theor. Phys.34, 399 (1965)

    Article  MATH  ADS  Google Scholar 

  31. Lado F., Memory J.D., Parker G.W.: Phys. Rev. B4, 1406 (1971)

    Article  ADS  Google Scholar 

  32. Sergeev N.A.: Solid State Nucl. Magn. Reson.10, 45–51 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Sergeev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sergeev, N.A., Panich, A.M. & Olszewski, M. Influence of molecular motions on NQR echoes. Appl. Magn. Reson. 27, 41–57 (2004). https://doi.org/10.1007/BF03166300

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03166300

Keywords

Navigation