Skip to main content

Accounting for domain knowledge in the construction of a generalization space

  • Formal Reasoning
  • Conference paper
  • First Online:
Book cover Conceptual Structures: Fulfilling Peirce's Dream (ICCS 1997)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1257))

Included in the following conference series:

Abstract

Our study registers in the framework of the automatic construction of classifications. We tackle an issue which has been less explored, that of the discovery of classifications. To tackle this problem we have chosen to pursue and develop the works of Mineau in the domain of the organization of knowledge bases using generalization [20]. We propose an original approach, called COING, to the discovery of classifications of structured objects represented using conceptual graphs. This approach consists in building a space of concepts which generalize the objects descriptions, called the Generalization Space, and then exploring this space so as to iteratively extract one or several conceptual classifications [2]. In this paper, we describe the method of construction of the Generalization Space that has been implemented in COING. This method is an extension of the MSG proposed by Mineau [19], which enables to account for knowledge about the types during the construction of the Generalization Space. However, we propose a formaliuzation of the use of constraints in the construction of the Generalization Space. We present empirical results of the method proposed that show its effiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Bisson. Learning in fol with a similarity measure. In Proc. of AAAI, pages 82–87, San Jose, CA, 1992.

    Google Scholar 

  2. I. Bournaud. Regroupement conceptuel pour l'organisation de connaissances. Thèse de Doctorat, Université Paris VI, France, 1996.

    Google Scholar 

  3. I. Bournaud and J.G. Ganascia. Conceptual clustering of complex objects: A generalization space based approach. In Lectures Notes in AI n-954. Proc. of the third International Conference on Conceptual Structures, pages 173–187. Springer-Verlag, 1995.

    Google Scholar 

  4. C. Carpineto and G. Romano. GALOIS: An order-theoretic approach to conceptual clustering. In Proceedings of the Tenth International Conference on Machine Learning, pages 33–40, 1993.

    Google Scholar 

  5. M. Chein and M. L. Mugnier. Conceptual graphs: Fundamental notions. In Revue d'intelligence artificielle 6(4), pages 365–406. 1992.

    Google Scholar 

  6. G. Ellis. Efficient retrieval from hierarchies of objects using lattice operations. In Lecture Notes in AI n-699. Proc. First International Conference on Conceptual Structures, pages 274–293. 1993.

    Google Scholar 

  7. D. Fisher. Knowledge acquisition via incremental conceptual clustering. In Machine Learning 2, pages 139–172. 1987.

    Google Scholar 

  8. D. Fisher. Iterative optimization and simplification of hierarchical clusterings. In Journal of Artificial Intelligence Research, Vol. 4, pages 147–179. 1996.

    Google Scholar 

  9. J.G. Ganascia. Agape et Charade, deux techniques d'apprentissage symbolique appliquées à la construction de bases de connaissances — Doctorat d'Etat. Thèse d'Etat, Université de Paris XI-Orsay, France, 1987.

    Google Scholar 

  10. J.H. Gennari, P. Langley, and D. Fisher. Models of incremental concept formation. In Artificial Intelligence 40–1(3), pages 11–61. 1989.

    Google Scholar 

  11. R. Godin, G. Mineau, R. Missaoui, and H. Mili. Méthodes de classification conceptuelle basées sur les treillis de galois et applications. In Revue d'Intelligence Artificielle, 9(2), pages 105–137. 1995.

    Google Scholar 

  12. O. Guinaldo. Techniques d'indexation pour aider à la classification dans le modèle des graphes conceptuels. In Actes de la conférence Langages et Modèles á Objets, LMO'95, Nancy, France, 1995.

    Google Scholar 

  13. D. Haussler. Learning conjunctive concepts in structural domains. In Machine Learning 4, pages 7–40. 1989.

    Google Scholar 

  14. J. U. Kietz and S. Wrobel. Controlling the complexity of learning in logic through syntactic and task-oriented models. In S. Muggleton, editor, Inductive Logic Programming, pages 335–359. Academic Press, 1992.

    Google Scholar 

  15. Y. Kodratoff and J. G. Ganascia. Improving the generalization step in learning. In J.G. Carbonell and T.M. Mitchell, editors, Machine Learning: an Artificial Intelligence Approach, pages 215–244. San Mateo, CA: Morgan Kaufmann, 1986.

    Google Scholar 

  16. R. Levinson. Uds: A universal data structure. In Lectures Notes in AI n-835, Proc. Second International Conference on Conceptual Structures, ICCS'94, pages 230–250. 1994.

    Google Scholar 

  17. R.S. Michalski. A theory and methodology of inductive learning. In Machine Learning, An Artificial Intelligence Approach, Volume I, pages 83–129. Morgan Kaufmann, 1983.

    Google Scholar 

  18. R.S. Michalski and R.E. Stepp. An application of ai techniques to structuring objects into an optimal conceptual hierarchy. In Proceedings of the Seventh International Joint Conference on Artificial Intelligence, pages 460–465, 1981.

    Google Scholar 

  19. G. Mineau, J. Gecsei, and R. Godin. Structuring knowledge bases using automatic learning. In Proc. Sixth International Conference on Data Engineering, pages 274–280, Los Angeles, USA, 1990.

    Google Scholar 

  20. G. Mineau, R. Godin, and J. Gecsei. La classification symbolique: une approche non subjective. In Actes des Journées Françaises d'Apprentissage, Lannion, France, Avril 1990.

    Google Scholar 

  21. S. Muggleton and C. Feng. Efficient induction of logic programs. In S. Muggleton, editor, Inductive Logic Programming, pages 281–298. Academic Press, 1992.

    Google Scholar 

  22. M. Pazzani and D. Kibler. The utility of knowledge in inductive logic. In Machine Learning (9), pages 57–94. 1992.

    Google Scholar 

  23. R. Quinlan. Learning logical definitions from relations. In Machine Learning (5), pages 239–266. 1990.

    Google Scholar 

  24. J. D. Roberts. A new parallelization of subgraph isomorphism refinement for classification and retrieval of conceptual structures. In Lectures Notes in AI n-954. Proc. of the third International Conference on Conceptual Structures, pages 202–216. Springer-Verlag, 1995.

    Google Scholar 

  25. B. Tausend. Representing biases for inductive logic programming. In Lecture Notes in Artificial Intelligence 784 F. Bergadano and L. De Raedt, editors, Proc. of the European Conference on Machine Learning, ECML-94, pages 427–430, 1994.

    Google Scholar 

  26. K. Thompson and P. Langley. Concept formation in structured domains. In Concept Formation: Knowledge and Experience in Unsupervised Learning. Morgan Kaufmann, San-Mateo, California, 1991.

    Google Scholar 

  27. J.D. Zucker and J.G. Ganascia. Changes of representation for efficient learning in structural domains. In Proc. International Conference on Machine Learning, Bari, Italy, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Dickson Lukose Harry Delugach Mary Keeler Leroy Searle John Sowa

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bournaud, I., Ganascia, JG. (1997). Accounting for domain knowledge in the construction of a generalization space. In: Lukose, D., Delugach, H., Keeler, M., Searle, L., Sowa, J. (eds) Conceptual Structures: Fulfilling Peirce's Dream. ICCS 1997. Lecture Notes in Computer Science, vol 1257. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0027890

Download citation

  • DOI: https://doi.org/10.1007/BFb0027890

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63308-2

  • Online ISBN: 978-3-540-69424-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics