Skip to main content
Log in

Central dysregulations in the control of energy homeostasis and endocrine alterations in anorexia and bulimia nervosa

  • Review Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

In the last decades we have come to understand that the hypothalamus is a key region in controlling energy homeostasis. A number of control models have been proposed to explain the regulation of feeding behavior in physiological and pathological conditions, but all those based on imbalances of single factors fail to explain the disrupted regulation of energy supply in eating disorders such as anorexia nervosa and bulimia nervosa, as well as other psychiatric disorders. A growing amount of evidence demonstrates that many signaling molecules originated within the brain or coming from the adipose tissue or the gastro-enteric tract are involved in the highly complex process controlling food intake and energy expenditure. The recent discovery of leptin, ghrelin, and other factors have made it possible to penetrate in the still undefined pathophysiology of eating disorders with the hope of finding effective treatments for such diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bulik CM, Sullivan PF, Tozzi F, Furberg H, Lichtenstein P, Pedersen NL. Prevalence, heritability, and prospective risk factors for anorexia nervosa. Arch Gen Psychiatry 2006, 63: 305–12.

    PubMed  Google Scholar 

  2. Halmi KA. Classification, diagnosis and comorbidities of Eating Disorders In: Maj M, Halmi K, Lopez-Ibor JJ, Sartorius N (eds). Eating Disorders. Chichester: Wiley 2003, 1–33.

    Google Scholar 

  3. Drewnowski A. Eating pathology-a continuum of behaviours? In: Maj M, Halmi K, Lopez-Ibor JJ, Sartorius N (eds). Eating Disorders. Chichester: Wiley 2003, 111–4.

    Google Scholar 

  4. Connan F, Campbell IC, Katzman M, Lightman SL, Treasure J. A neurodevelopmental model for anorexia nervosa. Physiol Behav 2003, 79: 13–24.

    PubMed  CAS  Google Scholar 

  5. Klump KL, Strober M, Bulik CM, et al. Personality characteristics of women before and after recovery from an eating disorder. Psychol Med 2004, 34: 1407–18.

    PubMed  Google Scholar 

  6. Fassino S, Abbate-Daga G, Amianto F, Leombruni P, Boggio S, Rovera GG. Temperament and character profile of eating disorders: a controlled study with the Temperament and Character Inventory. Int J Eat Disord 2002, 32: 412–25.

    PubMed  Google Scholar 

  7. Zuckerman M. The psychobiological model for impulsive unsocialized sensation seeking: a comparative approach. Neuropsychobiology 1996, 34: 125–9.

    PubMed  CAS  Google Scholar 

  8. Ruegg RG, Gilmore J, Ekstrom RD, et al. Clomipramine challenge responses covary with Tridimensional Personality Questionnaire scores in healthy subjects. Biol Psychiatry 1997, 42: 1123–9.

    PubMed  CAS  Google Scholar 

  9. Mazzanti CM, Lappalainen J, Long JC, et al. Role of the serotonin transporter promoter polymorphism in anxiety-related traits. Arch Gen Psychiatry 1998, 55: 936–40.

    PubMed  CAS  Google Scholar 

  10. Kaye, WH, Ebert MH, Raleigh M, Lake R. Abnormalities in CNS monoamine metabolism in anorexia nervosa. Arch Gen Psychiatry 1984, 41: 350–5.

    PubMed  CAS  Google Scholar 

  11. Kaye WH, Klump KL, Frank GK, Strober M. Anorexia and bulimia nervosa. Annu Rev Med 2000, 51: 299–313.

    PubMed  CAS  Google Scholar 

  12. Kaye WH, Frank GK, Klump KL. Psychobiology of Obsessional Behavior in Anorexia and Bulimia Nervosa. In: Bellodi L, Brambilla F (eds.) Eating Disorders and Obsessive Compulsive Disorder: an etiopathogenetic link? Torino: Centro Scientifico Editore 2003, 57–76.

    Google Scholar 

  13. Brambilla F, Monteleone P, Bortolotti F, et al. Persistent amenorrhoea in weight-recovered anorexics: psychological and biological aspects. Psychiatry Res 2003, 118: 249–57.

    PubMed  Google Scholar 

  14. Gianotti L, Pincelli AI, Scacchi M, et al. Effects of recombinant human insulin-like growth factor I administration on spontaneous and growth hormone (GH)-releasing hormone-stimulated GH secretion in anorexia nervosa. J Clin Endocrinol Metab 2000, 85: 2805–9.

    PubMed  CAS  Google Scholar 

  15. Scacchi M, Ida Pincelli A, Cavagnini F. Nutritional status in the neuroendocrine control of growth hormone secretion: the model of anorexia nervosa. Front Neuroendocrinol 2003, 24: 200–24.

    PubMed  CAS  Google Scholar 

  16. Tolle V, Kadem M, Bluet-Pajot MT, et al. Balance in ghrelin and leptin plasma levels in anorexia nervosa patients and constitutionally thin women. J Clin Endocrinol Metab 2003, 88: 109–16.

    PubMed  CAS  Google Scholar 

  17. Bailer UF, Kaye WH. A review of neuropeptide and neuroendocrine dysregulation in anorexia and bulimia nervosa. Curr Drug Targets CNS Neurol Disord 2003, 2: 53–9.

    PubMed  CAS  Google Scholar 

  18. Bluher S, Mantzoros CS. The role of leptin in regulating neuroendocrine function in humans. J Nutr 2004, 134: 2469S–74S.

    PubMed  Google Scholar 

  19. van der Lely AJ, Tschöp M, Heiman ML, Ghigo E. Biological, physiological, pathophysiological, and pharmacological aspects of ghrelin. Endocr Rev 2004, 25: 426–57.

    PubMed  Google Scholar 

  20. Haas V, Onur S, Paul T, et al. Leptin and body weight regulation in patients with anorexia nervosa before and during weight recovery. Am J Clin Nutr 2005, 81: 889–96.

    PubMed  CAS  Google Scholar 

  21. Elmquist JK, Elias CF, Saper CB. From lesions to leptin: hypothalamic control of food intake and body weight. Neuron 1999, 22: 221–32.

    PubMed  CAS  Google Scholar 

  22. Ellacott KL, Cone RD. The central melanocortin system and the integration of short- and long-term regulators of energy homeostasis. Recent Prog Horm Res 2004, 59: 395–408.

    PubMed  CAS  Google Scholar 

  23. Abizaid A, Gao Q, Horvath TL. Thoughts for food: brain mechanisms and peripheral energy balance. Neuron 2006, 51: 691–702.

    PubMed  CAS  Google Scholar 

  24. Nelson DL, Gehlert DR. Central nervous system biogenic amine targets for control of appetite and energy expenditure. Endocrine 2006, 29: 49–60.

    PubMed  CAS  Google Scholar 

  25. Druce M, Bloom SR. Central regulators of food intake. Curr Opin Clin Nutr Metab Care 2003, 6: 361–7.

    PubMed  CAS  Google Scholar 

  26. Steiger H. Eating disorders and the serotonin connection: state, trait and developmental effects. J Psychiatry Neurosci 2004, 29: 20–9.

    PubMed Central  PubMed  Google Scholar 

  27. Bailer UF, Frank GK, Henry SE, et al. Exaggerated 5-HT1A but normal 5-HT2A receptor activity in individuals ill with anorexia nervosa. Biol Psychiatry 2007, 61: 1090–9.

    PubMed  CAS  Google Scholar 

  28. Bailer UF, Price JC, Meltzer CC, et al. Altered 5-HT(2A) receptor binding after recovery from bulimia-type anorexia nervosa: relationships to harm avoidance and drive for thinness. Neuropsychopharmacology 2004, 29: 1143–55.

    PubMed  CAS  Google Scholar 

  29. Kaye WH, Bailer UF, Frank GK, Wagner A, Henry SE. Brain imaging of serotonin after recovery from anorexia and bulimia nervosa. Physiol Behav 2005, 86: 15–7.

    PubMed  CAS  Google Scholar 

  30. Gorwood P, Kipman A, Foulon C. The human genetics of anorexia nervosa. Eur J Pharmacol 2003, 480: 163–70.

    PubMed  CAS  Google Scholar 

  31. Kaye WH, Frank GK, Bailer UF, et al. Serotonin alterations in anorexia and bulimia nervosa: new insights from imaging studies. Physiol Behav 2005, 85: 73–81.

    PubMed  CAS  Google Scholar 

  32. Monteleone P, Brambilla F, Bortolotti F, Maj M. Serotonergic dysfunction across the eating disorders: relationship to eating behaviour, purging behaviour, nutritional status and general psychopathology. Psychol Med 2000, 30: 1099–110.

    PubMed  CAS  Google Scholar 

  33. Jimerson DC, Lesem MD, Kaye WH, Hegg AP, Brewerton TD. Eating disorders and depression: is there a serotonin connection? Biol Psychiatry 1990, 28: 443–54.

    PubMed  CAS  Google Scholar 

  34. Barbarich NC, Kaye WH, Jimerson D. Neurotransmitter and imaging studies in anorexia nervosa: new targets for treatment. Curr Drug Targets CNS Neurol Disord 2003, 2: 61–72.

    PubMed  CAS  Google Scholar 

  35. Bosanac P, Norman T, Burrows G, Beumont P. Serotonergic and dopaminergic systems in anorexia nervosa: a role for atypical antipsychotics? Aust N Z J Psychiatry 2005, 39: 146–53.

    PubMed  Google Scholar 

  36. Wellman PJ. Modulation of eating by central catecholamine systems. Curr Drug Targets 2005, 6: 191–9.

    PubMed  CAS  Google Scholar 

  37. Brambilla F, Bellodi L, Arancio C, Ronchi P, Limonta D. Central dopaminergic function in anorexia and bulimia nervosa: a psychoneuroendocrine approach. Psychoneuro-endocrinology 2001, 26: 393–409.

    CAS  Google Scholar 

  38. Frank GK, Bailer UF, Henry SE, et al. Increased dopamine D2/D3 receptor binding after recovery from anorexia nervosa measured by positron emission tomography and [11c]raclopride. Biol Psychiatry 2005, 58: 908–12.

    PubMed  CAS  Google Scholar 

  39. Kaye WH, Frank GK, McConaha C. Altered dopamine activity after recovery from restricting-type anorexia nervosa. Neuropsychopharmacology 1999, 21: 503–6.

    PubMed  CAS  Google Scholar 

  40. Pirke KM, Kellner M, Philipp E, Laessle R, Krieg JC, Fichter MM. Plasma norepinephrine after a standardized test meal in acute and remitted patients with anorexia nervosa and in healthy controls. Biol Psychiatry 1992, 31: 1074–7.

    PubMed  CAS  Google Scholar 

  41. Schwartz MW, Woods SC, Porte D Jr, Seeley RJ, Baskin DG. Central nervous system control of food intake. Nature 2000, 404: 661–71.

    PubMed  CAS  Google Scholar 

  42. Hahn TM, Breininger JF, Baskin DG, Schwartz MW. Coexpression of Agrp and NPY in fasting-activated hypothalamic neurons. Nat Neurosci 1998, 1: 271–2.

    PubMed  CAS  Google Scholar 

  43. Zhang JV, Ren PG, Avsian-Kretchmer O, et al. Obestatin, a peptide encoded by the ghrelin gene, opposes ghrelin’s effects on food intake. Science 2005, 310: 996–9.

    PubMed  CAS  Google Scholar 

  44. Vink T, Hinney A, van Elburg AA, et al. Association between an agouti-related protein gene polymorphism and anorexia nervosa. Mol Psychiatry 2001, 6: 325–8.

    PubMed  CAS  Google Scholar 

  45. Balthasar N, Dalgaard LT, Lee CE, et al. Divergence of melanocortin pathways in the control of food intake and energy expenditure. Cell 2005, 123: 493–505.

    PubMed  CAS  Google Scholar 

  46. Hashimoto K, Koizumi H, Nakazato M, Shimizu E, Iyo M. Role of brain-derived neurotrophic factor in eating disorders: recent findings and its pathophysiological implications. Prog Neuropsychopharmacol Biol Psychiatry 2005, 29: 499–504.

    CAS  Google Scholar 

  47. Xu B, Goulding EH, Zang K, et al. Brain-derived neurotrophic factor regulates energy balance downstream of melanocortin-4 receptor. Nat Neurosci 2003, 6: 736–42.

    PubMed Central  PubMed  CAS  Google Scholar 

  48. Thoenen H. Neurotrophins and neuronal plasticity. Science 1995, 270: 593–8.

    PubMed  CAS  Google Scholar 

  49. Nakazato M, Hashimoto K, Shimizu E, et al. Decreased levels of serum brain-derived neurotrophic factor in female patients with eating disorders. Biol Psychiatry, 2003, 54: 485–90.

    PubMed  CAS  Google Scholar 

  50. Monteleone P, Fabrazzo M, Martiadis V, Serritella C, Pannuto M, Maj M. Circulating brain-derived neurotrophic factor is decreased in women with anorexia and bulimia nervosa but not in women with binge-eating disorder: relationships to co-morbid depression, psychopathology and hormonal variables. Psychol Med 2005, 35: 897–905.

    PubMed  Google Scholar 

  51. Koizumi H, Hashimoto K, Itoh K, et al. Association between the brain-derived neurotrophic factor 196G/A polymorphism and eating disorders. Am J Med Genet B Neuropsychiatr Genet 2004, 127: 125–7.

    Google Scholar 

  52. Ribasés M, Gratacòs M, Fernández-Aranda F, et al. Association of BDNF with anorexia, bulimia and age of onset of weight loss in six European populations. Hum Mol Genet 2004, 13: 1205–12.

    PubMed  Google Scholar 

  53. Ribasés M, Gratacòs M, Fernández-Aranda F, et al. Association of BDNF with restricting anorexia nervosa and minimum body mass index: a family-based association study of eight European populations. Eur J Hum Genet 2005, 13: 428–34.

    PubMed  Google Scholar 

  54. Pagotto U, Marsicano G, Cota D, Lutz B, Pasquali R. The emerging role of the endocannabinoid system in endocrine regulation and energy balance. Endocr Rev 2006, 27: 73–100.

    PubMed  CAS  Google Scholar 

  55. Di Marzo V, Matias I. Endocannabinoid control of food intake and energy balance. Nat Neurosci 2005, 8: 585–9.

    PubMed  Google Scholar 

  56. Christie MJ, Vaughan CW. Neurobiology Cannabinoids act backwards. Nature 2001, 410: 527–30.

    PubMed  CAS  Google Scholar 

  57. Proulx K, Cota D, Castañeda TR, et al. Mechanisms of oleoylethanolamide-induced changes in feeding behavior and motor activity. Am J Physiol Regul Integr Comp Physiol 2005, 289: R729–37.

    PubMed  CAS  Google Scholar 

  58. Matias I, Di Marzo V. Endocannabinoids and the control of energy balance. Trends Endocrinol Metab 2007, 18: 27–37.

    PubMed  CAS  Google Scholar 

  59. Di Marzo V, Goparaju SK, Wang L, et al. Leptin-regulated endocannabinoids are involved in maintaining food intake. Nature 2001, 410: 822–5.

    PubMed  Google Scholar 

  60. Tucci SA, Rogers EK, Korbonits M, Kirkham TC. The cannabinoid CB1 receptor antagonist SR141716 blocks the orexigenic effects of intrahypothalamic ghrelin. Br J Pharmacol 2004, 143: 520–3.

    PubMed Central  PubMed  CAS  Google Scholar 

  61. Cota D, Barrera JG, Seeley RJ. Leptin in energy balance and reward: two faces of the same coin? Neuron 2006, 51: 678–80.

    PubMed  CAS  Google Scholar 

  62. Hommel JD, Trinko R, Sears RM, et al. Leptin receptor signaling in midbrain dopamine neurons regulates feeding. Neuron 2006, 51: 801–10.

    PubMed  CAS  Google Scholar 

  63. Fulton S, Pissios P, Manchon RP, et al. Leptin regulation of the mesoaccumbens dopamine pathway. Neuron 2006, 51: 811–22.

    PubMed  CAS  Google Scholar 

  64. Monteleone P, Matias I, Martiadis V, De Petrocellis L, Maj M, Di Marzo V. Blood levels of the endocannabinoid anandamide are increased in anorexia nervosa and in bingeeating disorder, but not in bulimia nervosa. Neuropsychopharmacology 2005, 30: 1216–21.

    PubMed  CAS  Google Scholar 

  65. Hao S, Avraham Y, Mechoulam R, Berry EM. Low dose anandamide affects food intake, cognitive function, neurotransmitter and corticosterone levels in diet-restricted mice. Eur J Pharmacol 2000, 392: 147–56.

    PubMed  CAS  Google Scholar 

  66. Di S, Malcher-Lopes R, Marcheselli VL, Bazan NG, Tasker JG. Rapid glucocorticoid-mediated endocannabinoid release and opposing regulation of glutamate and gammaaminobutyric acid inputs to hypothalamic magnocellular neurons. Endocrinology 2005, 146: 4292–301.

    PubMed  CAS  Google Scholar 

  67. Van Gaal LF, Rissanen AM, Scheen AJ, Ziegler O, and Rossner S. Effects of the cannabinoid-1 receptor blocker rimonabant on weight reduction and cardiovascular risk factors in overweight patients: 1-year experience from the RIO-Europe study. Lancet 2005, 365: 1389–97.

    PubMed  Google Scholar 

  68. Després JP, Golay A, Sjöström L; Rimonabant in Obesity-Lipids Study Group. Effects of rimonabant on metabolic risk factors in overweight patients with dyslipidemia. N Engl J Med 2005, 353: 2121–34.

    PubMed  Google Scholar 

  69. Gross H, Ebert MH, Faden VB, et al. A double-blind trial of delta 9-tetrahydrocannabinol in primary anorexia nervosa. J Clin Psychopharmacol 1983, 3: 165–71.

    PubMed  CAS  Google Scholar 

  70. Friedman JM. Leptin and the regulation of body weight. Harvey Lect 1999, 95: 107–36.

    PubMed  CAS  Google Scholar 

  71. Woods SC, Benoit SC, Clegg DJ. The brain-gut-islet connection. Diabetes 2006, 55Suppl 2: S114–21.

    CAS  Google Scholar 

  72. Benoit SC, Clegg DJ, Seeley RJ, Woods SC. Insulin and leptin as adiposity signals. Recent Prog Horm Res 2004, 59: 267–85.

    PubMed  CAS  Google Scholar 

  73. Woods SC, Benoit SC, Clegg DJ, Seeley RJ. Clinical endocrinology and metabolism. Regulation of energy homeostasis by peripheral signals. Best Pract Res Clin Endocrinol Metab 2004, 18: 497–515.

    CAS  Google Scholar 

  74. Niswender KD, Schwartz MW. Insulin and leptin revisited: adiposity signals with overlapping physiological and intracellular signaling capabilities. Front Neuroendocrinol 2003, 24: 1–10.

    PubMed  CAS  Google Scholar 

  75. Porte D Jr, Seeley RJ, Woods SC, Baskin DG, Figlewicz DP, Schwartz MW. Obesity, diabetes and the central nervous system. Diabetologia 1998, 41: 863–81.

    PubMed  CAS  Google Scholar 

  76. Masuzaki H, Ogawa Y, Isse N, et al. Human obese gene expression. Adipocyte-specific expression and regional differences in the adipose tissue. Diabetes 1995, 44: 855–8.

    CAS  Google Scholar 

  77. Dua A, Hennes MI, Hoffmann RG, et al. Leptin: a significant indicator of total body fat but not of visceral fat and insulin insensitivity in African-American women. Diabetes 1996, 45: 1635–7.

    PubMed  CAS  Google Scholar 

  78. Montague CT, Prins JB, Sanders L, Digby JE, O’Rahilly S. Depot- and sex-specific differences in human leptin mRNA expression: implications for the control of regional fat distribution. Diabetes 1997, 46: 342–7.

    PubMed  CAS  Google Scholar 

  79. Plum L, Schubert M, Brüning JC. The role of insulin receptor signaling in the brain. Trends Endocrinol Metab 2005, 16: 59–65.

    PubMed  CAS  Google Scholar 

  80. Campfield LA, Smith FJ, Burn P. The OB protein (leptin) pathway—a link between adipose tissue mass and central neural networks. Horm Metab Res 1996, 28: 619–32.

    PubMed  CAS  Google Scholar 

  81. Pelleymounter MA, Cullen MJ, Baker MB, et al. Effects of the obese gene product on body weight regulation in ob/ob mice. Science 1995, 269: 540–3.

    PubMed  CAS  Google Scholar 

  82. Eckel LA, Langhans W, Kahler A, Campfield LA, Smith FJ, Geary N. Chronic administration of OB protein decreases food intake by selectively reducing meal size in female rats. Am J Physiol 1998, 275: R186–93.

    PubMed  CAS  Google Scholar 

  83. Scarpace PJ, Matheny M, Pollock BH, Tümer N. Leptin increases uncoupling protein expression and energy expenditure. Am J Physiol 1997, 273: E226–30.

    PubMed  CAS  Google Scholar 

  84. Maffei M, Halaas J, Ravussin E, et al. Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat Med 1995, 1: 1155–61.

    PubMed  CAS  Google Scholar 

  85. Friedman JM, Halaas JL. Leptin and the regulation of body weight in mammals. Nature 1998, 395: 763–70.

    PubMed  CAS  Google Scholar 

  86. Farooqi IS, Jebb SA, Langmack G, et al. Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N Engl J Med 1999, 341: 879–84.

    PubMed  CAS  Google Scholar 

  87. Ahima RS, Prabakaran D, Mantzoros C, et al. Role of leptin in the neuroendocrine response to fasting. Nature 1996, 382: 250–2.

    PubMed  CAS  Google Scholar 

  88. Havel PJ, Kasim-Karakas S, Mueller W, Johnson PR, Gingerich RL, Stern JS. Relationship of plasma leptin to plasma insulin and adiposity in normal weight and overweight women: effects of dietary fat content and sustained weight loss. J Clin Endocrinol Metab 1996, 81: 4406–13.

    PubMed  CAS  Google Scholar 

  89. Kolaczynski JW, Considine RV, Ohannesian J, et al. Responses of leptin to short-term fasting and refeeding in humans: a link with ketogenesis but not ketones themselves. Diabetes 1996, 45: 1511–5.

    PubMed  CAS  Google Scholar 

  90. Weigle DS, Duell PB, Connor WE, Steiner RA, Soules MR, Kuijper JL. Effect of fasting, refeeding, and dietary fat restriction on plasma leptin levels. J Clin Endocrinol Metab 1997, 82: 561–5.

    PubMed  CAS  Google Scholar 

  91. Flier J, Maratos-Flier E. Energy homeostasis and body weight. Curr Biol 2000, 10: R215–7.

    PubMed  CAS  Google Scholar 

  92. Prentice AM, Moore SE, Collinson AC, O’Connell MA. Leptin and undernutrition. Nutr Rev 2002, 60: S56–67; discussion S68-87.

    PubMed  Google Scholar 

  93. Hebebrand J, Blum WF, Barth N, et al. Leptin levels in patients with anorexia nervosa are reduced in the acute stage and elevated upon short-term weight restoration. Mol Psychiatry 1997, 2: 330–4.

    PubMed  CAS  Google Scholar 

  94. Mantzoros CS, Moschos S, Avramopoulos I, et al. Leptin concentrations in relation to body mass index and the tumor necrosis factor-alpha system in humans. J Clin Endocrinol Metab 1997, 82: 3408–13.

    PubMed  CAS  Google Scholar 

  95. Kratzsch J, Lammert A, Bottner A, et al. Circulating soluble leptin receptor and free leptin index during childhood, puberty, and adolescence. J Clin Endocrinol Metab 2002, 87: 4587–94.

    PubMed  CAS  Google Scholar 

  96. Stein K, Vasquez-Garibay E, Kratzsch J, Romero-Velarde E, Jahreis G. Influence of nutritional recovery on the leptin axis in severely malnourished children. J Clin Endocrinol Metab 2006, 91: 1021–6.

    PubMed  CAS  Google Scholar 

  97. Dostálová I, Kopsky V, Dusková J, Papezová H, Pacák K, Nedvídková J. Leptin concentrations in the abdominal subcutaneous adipose tissue of patients with anorexia nervosa assessed by in vivo microdialysis. Regul Pept 2005, 128: 63–8.

    PubMed  Google Scholar 

  98. Chan JL, Heist K, DePaoli AM, Veldhuis JD, Mantzoros CS. The role of falling leptin levels in the neuroendocrine and metabolic adaptation to short-term starvation in healthy men. J Clin Invest 2003, 111: 1409–21.

    PubMed Central  PubMed  CAS  Google Scholar 

  99. Licinio J, Negrão AB, Mantzoros C, et al. Synchronicity of frequently sampled, 24-h concentrations of circulating leptin, luteinizing hormone, and estradiol in healthy women. Proc Natl Acad Sci U S A 1998, 95: 2541–6.

    PubMed Central  PubMed  CAS  Google Scholar 

  100. Haluzik M, Papezová M, Nedvãdková J, Kábrt J. Serum leptin levels in patients with anorexia nervosa before and after partial refeeding, relationships to serum lipids and biochemical nutritional parameters. Physiol Res 1999, 48: 197–202.

    PubMed  CAS  Google Scholar 

  101. Köpp W, Blum WF, Ziegler A, et al. Serum leptin and body weight in females with anorexia and bulimia nervosa. Horm Metab Res 1998, 30: 272–5.

    PubMed  Google Scholar 

  102. Holtkamp K, Herpertz-Dahlmann B, Hebebrand K, Mika C, Kratzsch J, Hebebrand J. Physical activity and restlessness correlate with leptin levels in patients with adolescent anorexia nervosa. Biol Psychiatry 2006, 60: 311–3.

    PubMed  CAS  Google Scholar 

  103. Exner C, Hebebrand J, Remschmidt H, et al. Leptin suppresses semi-starvation induced hyperactivity in rats: implications for anorexia nervosa. Mol Psychiatry, 2000, 5: 476–81.

    PubMed  CAS  Google Scholar 

  104. Hillebrand JJ, Koeners MP, de Rijke CE, Kas MJ, Adan RA. Leptin treatment in activity-based anorexia. Biol Psychiatry 2005, 58: 165–71.

    PubMed  CAS  Google Scholar 

  105. Asakawa A, Inui A, Inui T, Katsuura G, Fujino MA, Kasuga M. Leptin treatment ameliorates anxiety in ob/ob obese mice. J Diabetes Complications 2003, 17: 105–7.

    PubMed  Google Scholar 

  106. Monteleone P, DiLieto A, Castaldo E, Maj M. Leptin functioning in eating disorders. CNS Spectr 2004, 9: 523–9.

    PubMed  Google Scholar 

  107. Welt CK, Chan JL, Bullen J, et al. Recombinant human leptin in women with hypothalamic amenorrhea. N Engl J Med 2004, 351: 987–97.

    PubMed  CAS  Google Scholar 

  108. Holtkamp K, Hebebrand J, Mika C, Heer M, Heussen N, Herpertz-Dahlmann B. High serum leptin levels subsequent to weight gain predict renewed weight loss in patients with anorexia nervosa. Psychoneuroendocrinology 2004, 29: 791–7.

    PubMed  CAS  Google Scholar 

  109. Havel PJ. Control of energy homeostasis and insulin action by adipocyte hormones: leptin, acylation stimulating protein, and adiponectin. Curr Opin Lipidol 2002, 13: 51–9.

    PubMed  CAS  Google Scholar 

  110. Okamoto Y, Kihara S, Ouchi N, et al. Adiponectin reduces atherosclerosis in apolipoprotein E-deficient mice. Circulation 2002, 106: 2767–70.

    PubMed  CAS  Google Scholar 

  111. Steppan CM, Bailey ST, Bhat S, et al. The hormone resistin links obesity to diabetes. Nature 2001, 409: 307–12.

    PubMed  CAS  Google Scholar 

  112. Savage DB, Sewter CP, Klenk ES, et al. Resistin / Fizz3 expression in relation to obesity and peroxisome proliferator-activated receptor-gamma action in humans. Diabetes 2001, 50: 2199–202.

    PubMed  CAS  Google Scholar 

  113. Way JM, Görgün CZ, Tong Q, et al. Adipose tissue resistin expression is severely suppressed in obesity and stimulated by peroxisome proliferator-activated receptor gamma agonists. J Biol Chem 2001, 276: 25651–3.

    PubMed  CAS  Google Scholar 

  114. Housova J, Anderlova K, Krizova J, et al. Serum adiponectin and resistin concentrations in patients with restrictive and binge/purge form of anorexia nervosa and bulimia nervosa. J Clin Endocrinol Metab 2005, 90: 1366–70.

    PubMed  CAS  Google Scholar 

  115. Stumvoll M, Häring H. Resistin and adiponectin—of mice and men. Obes Res 2002, 10: 1197–9.

    PubMed  Google Scholar 

  116. Azuma K, Oguchi S, Matsubara Y, et al. Novel resistin promoter polymorphisms: association with serum resistin level in Japanese obese individuals. Horm Metab Res 2004, 36: 564–70.

    PubMed  CAS  Google Scholar 

  117. Jackson MB, Ahima RS. Neuroendocrine and metabolic effects of adipocyte-derived hormones. Clin Sci (Lond) 2006, 110: 143–52.

    CAS  Google Scholar 

  118. Gottero C, Broglio F, Prodam F, et al. Ghrelin: a link between eating disorders, obesity and reproduction. Nutr Neurosci 2004, 7: 255–70.

    PubMed  CAS  Google Scholar 

  119. Arvat E, Maccario M, Di Vito L, et al. Endocrine activities of ghrelin, a natural growth hormone secretagogue (GHS), in humans: comparison and interactions with hexarelin, a nonnatural peptidyl GHS, and GH-releasing hormone. J Clin Endocrinol Metab 2001, 86: 1169–74.

    PubMed  CAS  Google Scholar 

  120. Rindi G, Torsello A, Locatelli V, Solcia E. Ghrelin expression and actions: a novel peptide for an old cell type of the diffuse endocrine system. Exp Biol Med (Maywood) 2004, 229: 1007–16.

    CAS  Google Scholar 

  121. Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 1999, 402: 656–60.

    PubMed  CAS  Google Scholar 

  122. Stanley BG, Willett VL 3rd, Donias HW, Ha LH, Spears LC. The lateral hypothalamus: a primary site mediating excitatory amino acid-elicited eating. Brain Res 1993, 630: 41–9.

    PubMed  CAS  Google Scholar 

  123. Tschöp M, Smiley DL, Heiman ML. Ghrelin induces adiposity in rodents. Nature 2000, 407: 908–13.

    PubMed  Google Scholar 

  124. Muccioli G, Tschöp M, Papotti M, Deghenghi R, Heiman M, Ghigo E. Neuroendocrine and peripheral activities of ghrelin: implications in metabolism and obesity. Eur J Pharmacol 2002, 440: 235–54.

    PubMed  CAS  Google Scholar 

  125. Bizzarri C, Rigamonti AE, Giannone G, et al. Maintenance of a normal meal-induced decrease in plasma ghrelin levels in children with Prader-Willi syndrome. Horm Metab Res 2004, 36: 164–9.

    PubMed  CAS  Google Scholar 

  126. Tschöp M, Weyer C, Tataranni PA, Devanarayan V, Ravussin E, Heiman ML. Circulating ghrelin levels are decreased in human obesity. Diabetes 2001, 50: 707–9.

    PubMed  Google Scholar 

  127. Hansen TK, Dall R, Hosoda H, et al. Weight loss increases circulating levels of ghrelin in human obesity. Clin Endocrinol (Oxf) 2002, 56: 203–6.

    CAS  Google Scholar 

  128. Shiiya T, Nakazato M, Mizuta M, et al. Plasma ghrelin levels in lean and obese humans and the effect of glucose on ghrelin secretion. J Clin Endocrinol Metab 2002, 87: 240–4.

    PubMed  CAS  Google Scholar 

  129. Otto B, Tschöp M, Frühauf E, et al. Postprandial ghrelin release in anorectic patients before and after weight gain. Psychoneuroendocrinology 2005, 30: 577–81.

    PubMed  CAS  Google Scholar 

  130. Broglio F, Gianotti L, Destefanis S, et al. The endocrine response to acute ghrelin administration is blunted in patients with anorexia nervosa, a ghrelin hypersecretory state. Clin Endocrinol (Oxf) 2004, 60: 592–9.

    CAS  Google Scholar 

  131. Ariyasu H, Takaya K, Tagami T, et al. Stomach is a major source of circulating ghrelin, and feeding state determines plasma ghrelin-like immunoreactivity levels in humans. J Clin Endocrinol Metab 2001, 86: 4753–8.

    PubMed  CAS  Google Scholar 

  132. Otto B, Cuntz U, Fruehauf E, et al. Weight gain decreases elevated plasma ghrelin concentrations of patients with anorexia nervosa. Eur J Endocrinol 2001, 145: 669–73.

    PubMed  CAS  Google Scholar 

  133. Monteleone P, Martiadis V, Fabrazzo M, Serritella C, Maj M. Ghrelin and leptin responses to food ingestion in bulimia nervosa: implications for binge-eating and compensatory behaviours. Psychol Med 2003, 33: 1387–94.

    PubMed  CAS  Google Scholar 

  134. Fassino S, Daga GA, Mondelli V, et al. Hormonal and metabolic responses to acute ghrelin administration in patients with bulimia nervosa. Psychoneuroendocrinology 2005, 30: 534–40.

    PubMed  CAS  Google Scholar 

  135. Tanaka M, Naruo T, Muranaga T, et al. Increased fasting plasma ghrelin levels in patients with bulimia nervosa. Eur J Endocrinol 2002, 146: R1–3.

    PubMed  CAS  Google Scholar 

  136. Kojima S, Nakahara T, Nagai N, et al. Altered ghrelin and peptide YY responses to meals in bulimia nervosa. Clin Endocrinol (Oxf) 2005, 62: 74–8.

    CAS  Google Scholar 

  137. Tanaka M, Nakahara T, Muranaga T, et al. Ghrelin concentrations and cardiac vagal tone are decreased after pharmacologic and cognitive-behavioral treatment in patients with bulimia nervosa. Horm Behav 2006, 50: 261–5.

    PubMed  CAS  Google Scholar 

  138. Tanaka M, Nakahara T, Kojima S, et al. Effect of nutritional rehabilitation on circulating ghrelin and growth hormone levels in patients with anorexia nervosa. Regul Pept 2004, 122: 163–8.

    PubMed  CAS  Google Scholar 

  139. Troisi A, Di Lorenzo G, Lega I, et al. Plasma ghrelin in anorexia, bulimia, and binge-eating disorder: relations with eating patterns and circulating concentrations of cortisol and thyroid hormones. Neuroendocrinology 2005, 81: 259–66.

    PubMed  CAS  Google Scholar 

  140. Ando T, Komaki G, Naruo T, et al. Possible role of preproghrelin gene polymorphisms in susceptibility to bulimia nervosa. Am J Med Genet B Neuropsychiatr Genet 2006, 141: 929–34.

    Google Scholar 

  141. Cellini E, Nacmias B, Brecelj-Anderluh M, et al. Case-control and combined family trios analysis of three polymorphisms in the ghrelin gene in European patients with anorexia and bulimia nervosa. Psychiatr Genet 2006, 16: 51–2.

    PubMed  Google Scholar 

  142. Monteleone P, Tortorella A, Castaldo E, Di Filippo C, Maj M. No association of the Arg51Gln and Leu72Met polymorphisms of the ghrelin gene with anorexia nervosa or bulimia nervosa. Neurosci Lett 2006, 398: 325–7.

    PubMed  CAS  Google Scholar 

  143. Hotta M, Ohwada R, Katakami H, Shibasaki T, Hizuka N, Takano K. Plasma levels of intact and degraded ghrelin and their responses to glucose infusion in anorexia nervosa. J Clin Endocrinol Metab 2004, 89: 5707–12.

    PubMed  CAS  Google Scholar 

  144. Hanada T, Toshinai K, Kajimura N, et al. Anti-cachectic effect of ghrelin in nude mice bearing human melanoma cells. Biochem Biophys Res Commun 2003, 301: 275–9.

    PubMed  CAS  Google Scholar 

  145. Katz MG, Vollenhoven B. The reproductive endocrine consequences of anorexia nervosa. BJOG 2000, 107: 707–13.

    PubMed  CAS  Google Scholar 

  146. Chen HY, Trumbauer ME, Chen AS, et al. Orexigenic action of peripheral ghrelin is mediated by neuropeptide Y and agouti-related protein. Endocrinology 2004, 145: 2607–12.

    PubMed  CAS  Google Scholar 

  147. Vulliémoz NR, Xiao E, Xia-Zhang L, Germond M, Rivier J, Ferin M. Decrease in luteinizing hormone pulse frequency during a five-hour peripheral ghrelin infusion in the ovariectomized rhesus monkey. J Clin Endocrinol Metab 2004, 89: 5718–23.

    PubMed  Google Scholar 

  148. Batterham RL, Bloom SR. The gut hormone peptide YY regulates appetite. Ann N Y Acad Sci 2003, 994: 162–8.

    PubMed  CAS  Google Scholar 

  149. Tatemoto K, Mutt M. Isolation of two novel candidate hormones using a chemical method for finding naturally occurring polypeptides. Nature 1980, 285: 417–8.

    PubMed  CAS  Google Scholar 

  150. Abbott CR, Small CJ, Kennedy AR, et al. Blockade of the neuropeptide Y Y2 receptor with the specific antagonist BIIE0246 attenuates the effect of endogenous and exogenous peptide YY(3–36) on food intake. Brain Res 2005, 1043: 139–44.

    PubMed  CAS  Google Scholar 

  151. Adrian TE, Ferri GL, Bacarese-Hamilton AJ, Fuessl HS, Polak JM, Bloom SR. Human distribution and release of a putative new gut hormone, peptide YY. Gastroenterology 1985, 89: 70–7.

    Google Scholar 

  152. Batterham RL, Cohen MA, Ellis SM, et al. Inhibition of food intake in obese subjects by peptide YY3-36. N Engl J Med 2003, 349: 941–8.

    PubMed  CAS  Google Scholar 

  153. Stock S, Leichner P, Wong AC, et al. Ghrelin, peptide YY, glucose-dependent insulinotropic polypeptide, and hunger responses to a mixed meal in anorexic, obese, and control female adolescents. J Clin Endocrinol Metab 2005, 90: 2161–8.

    PubMed  CAS  Google Scholar 

  154. Miller KK, Lee EE, Lawson EA, et al. Determinants of skeletal loss and recovery in anorexia nervosa. J Clin Endocrinol Metab 2006, 91: 2931–7.

    PubMed Central  PubMed  CAS  Google Scholar 

  155. Degen L, Matzinger D, Drewe J, Beglinger C. The effect of cholecystokinin in controlling appetite and food intake in humans. Peptides 2001, 22: 1265–9.

    PubMed  CAS  Google Scholar 

  156. Bresciani E, Rapetti D, Donà F, et al. Obestatin inhibits feeding but does not modulate GH and corticosterone secretion in the rat. J Endocrinol Invest 2006, 29: RC16–8.

    PubMed  CAS  Google Scholar 

  157. Seoane LM, Al-Massadi O, Pazos Y, Pagotto U, Casanueva FF. Central obestatin administration does not modify either spontaneous or ghrelin-induced food intake in rats. J Endocrinol Invest 2006, 29: RC13–5.

    PubMed  CAS  Google Scholar 

  158. Bassil AK, Häglund Y, Brown J, et al. Little or no ability of obestatin to interact with ghrelin or modify motility in the rat gastrointestinal tract. Br J Pharmacol 2007, 150: 58–64.

    PubMed Central  PubMed  CAS  Google Scholar 

  159. Lauwers E, Landuyt B, Arckens L, Schoofs L, Luyten W. Obestatin does not activate orphan G protein-coupled receptor GPR39. Biochem Biophys Res Commun 2006, 351: 21–5.

    PubMed  CAS  Google Scholar 

  160. Devlin MJ, Walsh BT, Guss JL, Kissileff HR, Liddle RA, Petkova E. Postprandial cholecystokinin release and gastric emptying in patients with bulimia nervosa. Am J Clin Nutr 1997, 65: 114–20.

    PubMed  CAS  Google Scholar 

  161. Tomasik PJ, Sztefko K, Starzyk J. Cholecystokinin, glucose dependent insulinotropic peptide and glucagon-like peptide 1 secretion in children with anorexia nervosa and simple obesity. J Pediatr Endocrinol Metab 2004, 17: 1623–31.

    PubMed  CAS  Google Scholar 

  162. Baranowska B, Radzikowska M, Wasilewska-Dziubinska E, Roguski K, Borowiec M. Disturbed release of gastrointestinal peptides in anorexia nervosa and in obesity. Diabetes Obes Metab 2000, 2: 99–103.

    PubMed  CAS  Google Scholar 

  163. Beglinger C, Degen L, Matzinger D, D’Amato M, Drewe J. Loxiglumide, a CCK-A receptor antagonist, stimulates calorie intake and hunger feelings in humans. Am J Physiol Regul Integr Comp Physiol 2001, 280: R1149–54.

    PubMed  CAS  Google Scholar 

  164. Matzinger D, Gutzwiller JP, Drewe J, et al. Inhibition of food intake in response to intestinal lipid is mediated by cholecystokinin in humans. Am J Physiol 1999, 277: R1718–24.

    PubMed  CAS  Google Scholar 

  165. Dhillo WS, Bloom SR. Gastrointestinal hormones and regulation of food intake. Horm Metab Res 2004, 36: 846–51.

    PubMed  CAS  Google Scholar 

  166. Kieffer TJ. GIP or not GIP? That is the question. Trends Pharmacol Sci 2003, 24: 110–2.

    PubMed  CAS  Google Scholar 

  167. Cummings DE, Schwartz MW. Genetics and pathophysiology of human obesity. Annu Rev Med 2003, 54: 453–71.

    PubMed  CAS  Google Scholar 

  168. Young JK. Estrogen and the etiology of anorexia nervosa. Neurosci Biobehav Rev 1991, 15: 327–31.

    PubMed  CAS  Google Scholar 

  169. Roesch DM. Effects of selective estrogen receptor agonists on food intake and body weight gain in rats. Physiol Behav 2006, 87: 39–44.

    PubMed  CAS  Google Scholar 

  170. Bethea CL, Pecins-Thompson M, Schutzer WE, Gundlah C, Lu ZN. Ovarian steroids and serotonin neural function. Mol Neurobiol 1998, 18: 87–123.

    PubMed  CAS  Google Scholar 

  171. Bernardi F, Pluchino N, Begliuomini S, et al. Disadaptive disorders in women: allopregnanolone, a sensitive steroid. Gynecol Endocrinol 2004, 19: 344–53.

    PubMed  CAS  Google Scholar 

  172. Uher R, Murphy T, Brammer MJ, et al. Medial prefrontal cortex activity associated with symptom provocation in eating disorders. Am J Psychiatry 2004, 161: 1238–46.

    PubMed  Google Scholar 

  173. Duman RS. Role of neurotrophic factors in the etiology and treatment of mood disorders. Neuromolecular Med 2004, 5: 11–25.

    PubMed  CAS  Google Scholar 

  174. McEwen BS. Sex, stress and the hippocampus: allostasis, allostatic load and the aging process. Neurobiol Aging 2002, 23: 921–39.

    PubMed  CAS  Google Scholar 

  175. Smith M, Makino S, Kvetnansky R, Post RM. Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus. J Neurosci 1995, 15: 1768–77.

    PubMed  CAS  Google Scholar 

  176. Sapolsky RM. Why stress is bad for your brain. Science 1996, 273: 749–50.

    PubMed  CAS  Google Scholar 

  177. Simpson IA, Vannucci SJ. Glucose transport into brain: effects of hypoglycemia. Diabetes Nutr Metab 2002, 15: 281–4; discussion 284.

    PubMed  CAS  Google Scholar 

  178. Matsumoto N, Komiyama S, Akaike N. Pre- and postsynaptic ATP-sensitive potassium channels during metabolic inhibition of rat hippocampal CA1 neurons. J Physiol 2002, 541: 511–20.

    PubMed Central  PubMed  CAS  Google Scholar 

  179. Putignano P, Dubini A, Toja P, et al. Salivary cortisol measurement in normal-weight, obese and anorexic women: comparison with plasma cortisol. Eur J Endocrinol 2001, 145: 165–71.

    PubMed  CAS  Google Scholar 

  180. Morris JS, Ohman A, Dolan RJ. Conscious and unconscious emotional learning in the human amygdala. Nature 1998, 393: 467–70.

    PubMed  CAS  Google Scholar 

  181. Dallman MF, Pecoraro N, Akana SF, et al. Chronic stress and obesity: a new view of “comfort food”. Proc Natl Acad Sci U S A 2003, 100: 11696–701.

    PubMed Central  PubMed  CAS  Google Scholar 

  182. Veneman T, Mitrakou A, Mokan M, Cryer P, Gerich J. Effect of hyperketonemia and hyperlacticacidemia on symptoms, cognitive dysfunction, and counterregulatory hormone responses during hypoglycemia in normal humans. Diabetes 1994, 43: 1311–7.

    PubMed  CAS  Google Scholar 

  183. Bergh C, Södersten P. Anorexia nervosa, self-starvation and the reward of stress. Nat Med 1996, 2: 21–2.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Torsello MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torsello, A., Brambilla, F., Tamiazzo, L. et al. Central dysregulations in the control of energy homeostasis and endocrine alterations in anorexia and bulimia nervosa . J Endocrinol Invest 30, 962–976 (2007). https://doi.org/10.1007/BF03349245

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03349245

Key-words

Navigation