Skip to main content
Log in

In vivo measurement of ANP overall turnover and identification of its main metabolic pathways under steady state conditions in humans

  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Using a tracer method, we evaluated, in vivo, the main turnover parameters and the main metabolic pathways of ANP in 10 normal subjects. HPLC was used to purify the labeled hormone and the principal labeled metabolites present in venous plasma samples collected at determined times after tracer injection. The main ANP kinetic parameters were derived from the disappearance curves of [125I] ANP, which were satisfactorily fitted by a biexponential function in all subjects. Newly produced ANP initially distributes in a large, plasma equivalent space (10.9±3.6 l/m2 body surface); the hormone rapidly leaves this space due to both degradation and to distribution in peripheral spaces. The mean residence time in the body (19.4±19.8 min) and the plasma equivalent total distribution volume (28.2±11.5 l/m2) indicate that ANP is also widely distributed outside the initial space in humans (circulating ANP is no more than 1/15 of the body pool). Metabolic clearance rate values were distributed across a wide range (from 740 ml/min/m2 to 2581 ml/min/m2, mean 1849 ml/min/m2), and were shown to strongly correlate (R=0.962) with the daily urinary excretion of sodium. A complete separation of labeled ANP from its labeled metabolites was achieved by the HPLC technique; at least 3 different peaks due to labeled metabolites in vivo produced from the injected [125I]ANP1–28 were found. The first Chromatographic peak eluted showed an identical elution time to monoiodotyrosine. At least two other peaks due to in vivo generated labeled metabolites were well identified in the chromatograms: one peak (coeluting with labeled COOH-terminal tripeptide, H-Phe-Arg-Tyr-OH) was eluted ahead and one (coeluting with labeled peptide fragments ANP7–28, ANP13–28, and ANP18–28) behind the elution peak of the labeled ANP. The peak of labeled tyrosine appearing in the plasma ranged between 3 and 5 min after tracer injection; the other two peaks of radioiodinated metabolites showed their highest activity in the first sample (1.5 min), suggesting an earlier occurrence of their peaks. These labeled metabolites seem to be intermediate peptides, between the intact circulating form of the hormone and the final labeled metabolite (tyrosine), which is the last amino acid of the peptide hormone, produced in vivo after injection of the tracer. In conclusion, our kinetic data indicate that: 1) newly produced ANP is rapidly distributed and degraded; 2) the body pool of the hormone can be considered a combination of two exchanging spaces, circulating ANP representing no more than 1/15 of the body pool; 3) MCR of ANP is closely related to sodium intake; 4) labeled tyrosine is the main endogenous metabolite of the hormone in humans; 5) both receptor-mediated and enzymatic degradation play an important role in the turnover of ANP in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. De Bold A.J. Atrial natriuretic factor: a hormone produced by the heart. Science 230: 767, 1985.

    Article  PubMed  Google Scholar 

  2. Goetz K.L. Physiology and pathophysiology of atrial peptides. Am. J. Physiol. 254: E1, 1988.

    PubMed  CAS  Google Scholar 

  3. Atlas S.A., Laragh J.H. Atrial nauriuretic factors and its involvement in hypertensive disorders. In: Laragh J.H., Brenner B.H. (Eds), Hypertension pathophysiology, diagnosis and management. Raven Press Ltd, 1990, New York, p. 861.

  4. Condra C.L., Leldy E.A., Bunting P., Colton CD., Nutt R.F. Clearance and early hydrolysis of Atrial Nautriretic Factor in vivo. Structural analysis of cleavage sites and design of an analogue that inhibits hormone cleavage. J. Clin. Invest. 81: 1348, 1988.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. Sonnenberg J.L., Sakane Y., Jeng A.Y., Koehn J.A., Ansell J.A., Wennogle L.P., Ghai R.D. Identification of protease 3.4.24.11 as the major Atrial Natriuretic Factor degrading enzyme in the rat kidney. Peptides 9: 173, 1988.

    Article  PubMed  CAS  Google Scholar 

  6. Ruskoaho H. Atrial natriuretic peptide: synthesis, release, and metabolism. Pharmacol. Rev. 44: 479, 1992.

    PubMed  CAS  Google Scholar 

  7. Tan A.C., Russel F.G., Thien T., Benraad T.J. Atrial natriuretic peptide. An overview of clinical pharmacology and pharmacokinetics. Clin. Pharmacokint. 24: 28, 1993.

    Article  CAS  Google Scholar 

  8. Iervasi G., Clerico A., Berti S., Pilo A., Vitek F., Biagini A., Baratto M.T., Bianchi R., Donato L. ANP kinetics in normal men: in vivo measurement by a tracer method and correlation with sodium intake. Am. J. Physiol. 264: F480, 1993.

    PubMed  CAS  Google Scholar 

  9. Clerico A., Del Chicca M.G., Giganti M., Zucchelli G.C., Piffanelli A. Evaluation and comparison of the analytical performances of two RIA kits for the assay of artrial natriuretic peptides (ANP). J. Nucl. Med. Allied Sci. 34: 81, 1990.

    PubMed  CAS  Google Scholar 

  10. Clerico A., Opocher G., Pelizzola D., Panzali A.F., Andreone P., Del Chicca M.G., Giganti M., Zucchelli G.C., Mantero F., Albertini A., Piffanelli A. Evaluation of the analytical performance of RIA methods for measurement of Atrial Natriuretic Peptides (ANP): a multicentre study. J. Clin. Immunoassay 14: 251, 1991.

    Google Scholar 

  11. Maack T. Receptors of atrial nautriuretic factors. Annu. Rev. Physiol. 54: 11, 1992.

    Article  PubMed  CAS  Google Scholar 

  12. Hirata Y., Tomita M., Takada S., Yoshimi H. Vascular receptor binding activities and cyclic GMP responses by synthetic human and rat atrial natriuretic peptides (ANP) and receptor down-regulation by ANP. Biochem. Biophys. Res. Commun. 128: 538, 1985.

    Article  PubMed  CAS  Google Scholar 

  13. Cuneo R.C., Espiner E.A., Nicholls M.G., Yandle T.G., Joyce ST., Gilchrist N.L. Renal, hemodynamic, and hormonal responses to atrial nautrietic peptides infusions in normal man, and effect of sodium intake. J. Clin. Endocrinol. Metab. 63: 946, 1986.

    Article  PubMed  CAS  Google Scholar 

  14. Guaquelin G., Garcia R., Carrier F., Cantin M., Gutkowaska J., Thibault G., Schiffrin E.L. Glomerular ANF receptor regulation during changes in sodium and water matabolism. Am. J. Physiol. 254: F51, 1988.

    Google Scholar 

  15. Katafuchi T., Mizuno T., Hagiwara H., Itakura M., Ito T., Hirose S. Modification by NaCl of atrial Natriuretic Peptide receptor levels and cyclic GMP responsiveness to Atrial Natriuretic Peptide of cultured vascular endothelial cells. J. Biol. Chem. 267: 7624, 1992.

    PubMed  CAS  Google Scholar 

  16. Murthy K.K., Thibault G., Garcia R., Gutkowska J., Genest J., Cantin M. Degradation of atrial natriuretic factor in the rat. Biochem. J. 240: 461, 1986.

    PubMed Central  PubMed  CAS  Google Scholar 

  17. Kenny A.J., Stephenson S.L. Role of endopeptidase-24.11 in the inactivation of atrial natriuretic peptide. FEBS Lett. 232: 1, 1988.

    Article  PubMed  CAS  Google Scholar 

  18. Vanneste Y., Pauwels S., Lambotte L., Michel A., Dimaline R., Deschodt L.M. Respective roles of Kallikrein and endopeptidase 24.11 in the metabolic pathway of atrial natriuretic peptides in the rat. Biochem. J. 269: 801, 1990.

    PubMed Central  PubMed  CAS  Google Scholar 

  19. Yandle T., Crozier I., Niclolls G., Espiner E., Carne A., Brennan S. Amino acid sequence of atrial natriuretic peptides in human coronary sinus plasma. Biochem. Byophsy. Res. Commun. 146: 832, 1987.

    Article  CAS  Google Scholar 

  20. Sybertz E.J., Chiu P.J.S., Vemulapalli S., Pitts B., Foster C.J., Watkins R.W., Barnett A., Haslanger M.F. SCH 39370, a neutral metalloendopeptidase inhibitor, potentiates biological responses to atrial natriuretic factor and lowers blood pressure in desoxycorticosterone acetate-sodium hypertensive rats J. Pharmacol. Exp. Ther. 250: 624, 1989.

    PubMed  CAS  Google Scholar 

  21. Charles J.C., Espiner E.A., Cameron V.A., Richards A.M., Yandle T.G., Sybertz EJ. Hemodynamic and hormonal effects of neutral endopeptidase inhibitor SCH 39370 in sheep. Hypertension 17: 643, 1991.

    Article  PubMed  CAS  Google Scholar 

  22. Richards M., Espiner E., Frampton C., Ikram H., Yandle T., Sopwith M., Cussans N. Inhibition of endopeptidase EC 24.11 in humans. Renal and endocrine effects. Hypertension 16: 269, 1990.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clerico, A., Iervasi, G., Berti, S. et al. In vivo measurement of ANP overall turnover and identification of its main metabolic pathways under steady state conditions in humans. J Endocrinol Invest 18, 194–204 (1995). https://doi.org/10.1007/BF03347802

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03347802

Key-words

Navigation