Skip to main content
Log in

Symmetric Sets With Midpoints and Algebraically Equivalent Theories

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

In this paper we consider an algebraic generalization of symmetric spaces of noncompact type to a more general class of symmetric structures equipped with midpoints. These symmetric structures are shown to have close relationships to and even categorical equivalences with a variety of other algebraic structures: axiomatic midpoint spaces, uniquely 2-divisible twisted subgroups, transversal twisted subgroups of involutive groups, a special class of loops called B-loops, and gyrocommutative gyrogroups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Aschbacher, Near subgroups of finite groups, J. Group Theory 1 (1998), 113–129.

    Article  MathSciNet  MATH  Google Scholar 

  2. V. Belousov, Foundations of the Theory of Quasigroups and Loops, Isdat. Nauka, Moscow, 1967. (Russian)

    Google Scholar 

  3. J. Faraut and A. Korányi, Analysis on Symmetric Cones, Clarendon Press, Oxford, 1994.

    MATH  Google Scholar 

  4. T. Foguel, Polar decomposition of locally finite groups, Results Math. 42 (2002), 69–73.

    MathSciNet  MATH  Google Scholar 

  5. T. Foguel, M. Kinyon, and J. Phillips, On twisted subgroups and Bol loops of odd order, preprint.

  6. E. Gabrieli and H. Karzel, Point-reflection geometries, geometric K-loops and unitary geometries, Results in Math. 32 (1997), 66–72.

    Article  MathSciNet  MATH  Google Scholar 

  7. G. Glauberman, On loops of odd order I, J. Algebra 1 (1964), 374–396.

    Article  MathSciNet  MATH  Google Scholar 

  8. G. Glauberman, On loops of odd order II, J. Algebra 8 (1968), 393–414.

    Article  MathSciNet  MATH  Google Scholar 

  9. S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, Orlando, 1978.

    MATH  Google Scholar 

  10. H. Hotje, M. Marchi, and S. Pianta, On a class of point-reflection geometries, Discrete Math. 129 (1994), 139–147.

    Article  MathSciNet  MATH  Google Scholar 

  11. D. Joyce, A classifying invariant of knots, the knot quandle, J. Pure Appl. Alg. 23 (1982), 37–66.

    Article  MathSciNet  MATH  Google Scholar 

  12. K. Hofmann and S. Morris, The Structure of Compact Groups, de Gruyter, Berlin, 1998.

    MATH  Google Scholar 

  13. H. Hotje, S. Pianta, and E. Zizioli, Symmetric incidence groupoids, Journal of Geometry 77 (2003), 48–60.

    Article  MathSciNet  MATH  Google Scholar 

  14. M. Kano, H. Nagao, and N. Nobusawa, On finite homogeneous symmetric sets, Osaka J. Math. 13 (1976), 399–406.

    MathSciNet  MATH  Google Scholar 

  15. H. Karzel, Recent developments on absolute geometries and algebraization by K-loops, Discrete Mahematics 208/209 (1999), 387–409.

    Article  MathSciNet  Google Scholar 

  16. H. Karzel and H. Wefelscheid, Groups with an involutory antiautomorphism and K-loops; application to space-time-world and hyperbolic geometry. Results Math. 23 (1993), 338–354.

    Article  MathSciNet  MATH  Google Scholar 

  17. H. Kiechle, Theory of K-Loops, Lecture Notes in Mathematics 1778, Springer, Berlin, 2002.

    Book  MATH  Google Scholar 

  18. M. Kikkawa, On some quasigroups of algebraic models of symmetric spaces, Mem. Fac. Lit. Sei. Shimane Univ. (Nat. Sci.) 6 (1973), 9–13.

    MathSciNet  MATH  Google Scholar 

  19. M. Kinyon, Global left loop structures on spheres, Comment Math. Univ. Carolin., 41 (2000), 325–346.

    MathSciNet  MATH  Google Scholar 

  20. M. Kinyon and O. Jones, Loops and semidirect products, Comm. Algebra 28 (2000), 4137–4164.

    Article  MathSciNet  MATH  Google Scholar 

  21. A. Kreuzer, Beispiele endlicher und unendlicher K-loops, Results Math. 23 (1993), 355–362.

    Article  MathSciNet  MATH  Google Scholar 

  22. S. Lang, Fundamentals of Differential Geometry, Graduate Texts in Math., Springer, Heidelberg, 1999.

    Book  MATH  Google Scholar 

  23. J. D. Lawson and Y. Lim, The geometric mean, matrices, metrics, and more, Amer. Math. Monthly 108 (2001), 797–812.

    Article  MathSciNet  MATH  Google Scholar 

  24. —, Means on dyadic symmetric sets and polar decompositions, to appear Abh. Math. Sem. Univ. Hamburg.

  25. Y. Lim, Geometric means on symmetric cones, Arch, der Math. 75 (2000), 39–45.

    Article  MATH  Google Scholar 

  26. —, Metric and spectral geometric means on symmetric cones, submitted.

  27. O. Loos, Symmetric spaces, I: General Theory, Benjamin, New York, Amsterdam, 1969.

    MATH  Google Scholar 

  28. K.-H. Neeb, A Cartan-Hadamard theorem for Banach-Finsler manifolds, Proceedings of the Conference on Geometric and Combinatorial Group Theory, Part II (Haifa, 2000), Geom. Dedicata 95 (2002), 115–156.

    Article  MathSciNet  MATH  Google Scholar 

  29. N. Nobusawa, On symmetric structure of a finite set, Osaka J. Math. 11 (1974), 569–575.

    MathSciNet  MATH  Google Scholar 

  30. N. Nobusawa, Orthogonal groups and symmetric sets, Osaka J. Math. 20 (1983), 5–8.

    MathSciNet  MATH  Google Scholar 

  31. R. Pierce, Symmetric groupoids, Osaka J. Math. 15 (1978), 51–76.

    MathSciNet  MATH  Google Scholar 

  32. R. Pierce, Symmetric groupoids II, Osaka J. Math. 16 (1979), 317–348.

    MathSciNet  MATH  Google Scholar 

  33. D. A. Robinson, A loop-theoretic study of right-sided quasigroups, Ann. Soc. Sci. Bruxelles Sér. I 93 (1979), 7–16.

    MATH  Google Scholar 

  34. L. V. Sabinin, L. L. Sabinina, and L. V. Sbitneva, On the notion of a gyrogroup, Aeq. Math. 56 (1998), 11–17.

    Article  MathSciNet  MATH  Google Scholar 

  35. K. Sörensen, Ebene mit Kongruenz, J. Geom. 22 (1984), 15–30.

    Article  MathSciNet  MATH  Google Scholar 

  36. A. A. Ungar, Midpoints in gyrogroups. Found. Phys. 26 (1996), 1277–1328.

    Article  MathSciNet  Google Scholar 

  37. A. A. Ungar, Thomas precession: its underlying gyrogroup axioms and their use in hyperbolic geometry and relativistic physics, Found. Phys. 27 (1997), 881–951.

    Article  MathSciNet  Google Scholar 

  38. H. Upmeier, Symmetric Banach Manifolds and Jordan C* -algebras, North Holland Mathematics Studies, 1985.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jimmie Lawson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lawson, J., Lim, Y. Symmetric Sets With Midpoints and Algebraically Equivalent Theories. Results. Math. 46, 37–56 (2004). https://doi.org/10.1007/BF03322869

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03322869

AMS Classifications (2000)

Key words

Navigation