Skip to main content
Log in

Diagnostic and Prognostic Sarcoma Signatures

  • Cancer
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Sarcomas are a diverse group of childhood and adult tumors that arise from mesenchymal tissue. In contrast to epithelial tumors, most of which are defined by a specific organ system, sarcomas can arise virtually anywhere in the body, such that their characteristic histopathology and clinical presentation form the core diagnostic criteria.

Precise identification by differential diagnosis is the first element of a successful treatment, since these tumors show wide variation in response to specific therapies and misdiagnosis can lead to suboptimal therapy. However, due to overlapping histopathologic features among the sarcomas, as well as the multiple subtypes or variants within a single histologic group, pathologists and clinicians are increasingly reliant on molecular diagnostic approaches to aid in the differential diagnosis. Gene expression profiling or microarray analysis is now being used to develop expression signatures that appear to be better than histological features or any single biomarker at discriminating tumor types, identifying clinical variants, and modeling complex tumor behavior.

This review examines the current progress in identifying diagnostic and prognostic expression signatures for four sarcomas: rhabdomyosarcoma, Ewing’s family of tumors, synovial sarcoma, and osteosarcoma. In this context, we discuss the current status and future potential for using expression signatures to improve tumor classification, outcome prediction, and therapeutic response in patients with these sarcomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2008. CA Cancer J Clin 2008 Mar–Apr; 58(2): 71–96

    Article  PubMed  Google Scholar 

  2. Ries LAG, Smith MA, Gurney JG, et al. Cancer incidence and survival among children and adolescents: United States SEER Program 1975–1995. Bethesda (MD): National Cancer Institute, SEER Program, 1999. NIH Publication no. 99-4649

  3. Linet MS, Ries LA, Smith MA, et al. Cancer surveillance series: recent trends in childhood cancer incidence and mortality in the United States. J Natl Cancer Inst 1999 Jun 16; 91(12): 1051–8

    Article  PubMed  CAS  Google Scholar 

  4. Meyer WH, Spunt SL. Soft tissue sarcomas of childhood. Cancer Treat Rev 2004 May; 30(3): 269–80

    Article  PubMed  CAS  Google Scholar 

  5. Segal NH, Pavlidis P, Antonescu CR, et al. Classification and subtype prediction of adult soft tissue sarcoma by functional genomics. Am J Pathol 2003 Aug; 163(2): 691–700

    Article  PubMed  CAS  Google Scholar 

  6. Wachtel M, Dettling M, Koscielniak E, et al. Gene expression signatures identify rhabdomyosarcoma subtypes and detect a novel t(2;2)(q35;p23) translocation fusing PAX3 to NCOA1. Cancer Res 2004 Aug 15; 64(16): 5539–45

    Article  PubMed  CAS  Google Scholar 

  7. Khan J, Simon R, Bittner M, et al. Gene expression profiling of alveolar rhabdomyosarcoma with cDNA microarrays. Cancer Res 1998 Nov 15; 58(22): 5009–13

    PubMed  CAS  Google Scholar 

  8. Pandita A, Zielenska M, Thorner P, et al. Application of comparative genomic hybridization, spectral karyotyping, and microarray analysis in the identification of subtype-specific patterns of genomic changes in rhabdomyosarcoma. Neoplasia 1999 Aug; 1(3): 262–75

    Article  PubMed  CAS  Google Scholar 

  9. Davicioni E, Finckenstein FG, Shahbazian V, et al. Identification of a PAX-FKHR gene expression signature that defines molecular classes and determines the prognosis of alveolar rhabdomyosarcomas. Cancer Res 2006 Jul 15; 66(14): 6936–46

    Article  PubMed  CAS  Google Scholar 

  10. DePitta C, Tombolan L, Albiero G, et al. Gene expression profiling identifies potential relevant genes in alveolar rhabdomyosarcoma pathogenesis and discriminates PAX3-FKHR positive and negative tumors. Int J Cancer 2006 Jun 1; 118(11): 2772–81

    Article  PubMed  CAS  Google Scholar 

  11. Lae M, Ahn EH, Mercado GE, et al. Global gene expression profiling of PAX-FKHR fusion-positive alveolar and PAX-FKHR fusion-negative embryonal rhabdomyosarcomas. J Pathol 2007 Jun; 212(2): 143–51

    Article  PubMed  CAS  Google Scholar 

  12. Romualdi C, DePitta C, Tombolan L, et al. Defining the gene expression signature of rhabdomyosarcoma by meta-analysis. BMC Genomics 2006; 7:287

    Article  PubMed  CAS  Google Scholar 

  13. Hancock JD, Lessnick SL. A transcriptional profiling meta-analysis reveals a core EWS-FLI gene expression signature. Cell Cycle 2008 Jan; 7(2): 250–6

    Article  PubMed  CAS  Google Scholar 

  14. Ohali A, Avigad S, Zaizov R, et al. Prediction of high risk Ewing’s sarcoma by gene expression profiling. Oncogene 2004 Nov 25; 23(55): 8997–9006

    Article  PubMed  CAS  Google Scholar 

  15. Schaefer KL, Eisenacher M, Braun Y, et al. Microarray analysis of Ewing’s sarcoma family of tumours reveals characteristic gene expression signatures associated with metastasis and resistance to chemotherapy. Eur J Cancer 2008 Mar; 44(5): 699–709

    Article  PubMed  CAS  Google Scholar 

  16. Nielsen TO, West RB, Linn SC, et al. Molecular characterisation of soft tissue tumours: a gene expression study. Lancet 2002 Apr 13; 359(9314): 1301–7

    Article  PubMed  CAS  Google Scholar 

  17. Nakayama R, Nemoto T, Takahashi H, et al. Gene expression analysis of soft tissue sarcomas: characterization and reclassification of malignant fibrous histio-cytoma. Mod Pathol 2007 Jul; 20(7): 749–59

    Article  PubMed  CAS  Google Scholar 

  18. Nagayama S, Katagiri T, Tsunoda T, et al. Genome-wide analysis of gene expres-sion in synovial sarcomas using a cDNA microarray. Cancer Res 2002 Oct 15; 62(20): 5859–66

    PubMed  CAS  Google Scholar 

  19. Lee YF, John M, Edwards S, et al. Molecular classification of synovial sarcomas, leiomyosarcomas and malignant fibrous histiocytomas by gene expression profiling. Br J Cancer 2003 Feb 24; 88(4): 510–5

    Article  PubMed  CAS  Google Scholar 

  20. Allander SV, Illei PB, Chen Y, et al. Expression profiling of synovial sarcoma by cDNA microarrays: association of ERBB2, IGFBP2, and ELF3 with epithelial differentiation. Am J Pathol 2002 Nov; 161(5): 1587–95

    Article  PubMed  CAS  Google Scholar 

  21. Francis P, Namlos HM, Muller C, et al. Diagnostic and prognostic gene expression signatures in 177 soft tissue sarcomas: hypoxia-induced transcription profile signifies metastatic potential. BMC Genomics 2007; 8: 73

    Article  PubMed  CAS  Google Scholar 

  22. Fernebro J, Francis P, Eden P, et al. Gene expression profiles relate to SS18/SSX fusion type in synovial sarcoma. Int J Cancer 2006 Mar 1; 118(5): 1165–72

    Article  PubMed  CAS  Google Scholar 

  23. Wolf M, El-Rifai W, Tarkkanen M, et al. Novel findings in gene expression detected in human osteosarcoma by cDNA microarray. Cancer Genet Cytogenet 2000 Dec; 123(2): 128–32

    Article  PubMed  CAS  Google Scholar 

  24. Leonard P, Sharp T, Henderson S, et al. Gene expression array profile of human osteosarcoma. Br J Cancer 2003 Dec 15; 89(12): 2284–8

    Article  PubMed  CAS  Google Scholar 

  25. Ochi K, Daigo Y, Katagiri T, et al. Prediction of response to neoadjuvant chemotherapy for osteosarcoma by gene-expression profiles. Int J Oncol 2004 Mar; 24(3): 647–55

    PubMed  CAS  Google Scholar 

  26. Man TK, Chintagumpala M, Visvanathan J, et al. Expression profiles of osteosarcoma that can predict response to chemotherapy. Cancer Res 2005 Sep 15; 65(18): 8142–50

    Article  PubMed  CAS  Google Scholar 

  27. Mintz MB, Sowers R, Brown KM, et al. An expression signature classifies chemotherapy-resistant pediatric osteosarcoma. Cancer Res 2005 Mar 1; 65(5): 1748–54

    Article  PubMed  CAS  Google Scholar 

  28. Sanchez-Carbayo M, Belbin TJ, Scotlandi K, et al. Expression profiling of osteosarcoma cells transfected with MDR1 and NEO genes: regulation of cell adhesion, apoptosis, and tumor suppression-related genes. Lab Invest 2003 Apr; 83(4): 507–17

    PubMed  CAS  Google Scholar 

  29. Nakano T, Tani M, Ishibashi Y, et al. Biological properties and gene expression associated with metastatic potential of human osteosarcoma. Clin Exp Metastasis 2003; 20(7): 665–74

    Article  PubMed  CAS  Google Scholar 

  30. Khanna C, Khan J, Nguyen P, et al. Metastasis-associated differences in gene expression in a murine model of osteosarcoma. Cancer Res 2001 May 1; 61(9): 3750–9

    PubMed  CAS  Google Scholar 

  31. Khan J, Wei JS, Ringner M, et al. Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat Med 2001 Jun; 7(6): 673–9

    Article  PubMed  CAS  Google Scholar 

  32. Baer C, Nees M, Breit S, et al. Profiling and functional annotation of mRNA gene expression in pediatric rhabdomyosarcoma and Ewing’s sarcoma. Int J Cancer 2004 Jul 10; 110(5): 687–94

    Article  PubMed  CAS  Google Scholar 

  33. Chen QR, Vansant G, Oades K, et al. Diagnosis of the small round blue cell tumors using multiplex polymerase chain reaction. J Mol Diagn 2007 Feb; 9(1): 80–8

    Article  PubMed  CAS  Google Scholar 

  34. Sotiriou C, Khanna C, Jazaeri AA, et al. Core biopsies can be used to distinguish differences in expression profiling by cDNA microarrays. J Mol Diagn 2002 Feb; 4(1): 30–6

    Article  PubMed  CAS  Google Scholar 

  35. Baird K, Davis S, Antonescu CR, et al. Gene expression profiling of human sarcomas: insights into sarcoma biology. Cancer Res 2005 Oct 15; 65(20): 9226–35

    Article  PubMed  CAS  Google Scholar 

  36. Crist WM, Anderson JR, Meza JL, et al. Intergroup rhabdomyosarcoma study-IV: results for patients with nonmetastatic disease. J Clin Oncol 2001 Jun 15; 19(12): 3091–102

    PubMed  CAS  Google Scholar 

  37. Breneman JC, Lyden E, Pappo AS, et al. Prognostic factors and clinical outcomes in children and adolescents with metastatic rhabdomyosarcoma: a report from the Intergroup Rhabdomyosarcoma Study IV. J Clin Oncol 2003 Jan 1; 21(1): 78–84

    Article  PubMed  Google Scholar 

  38. NewtonJr WA, Soule EH, Hamoudi AB, et al. Histopathology of childhood sarcomas, Intergroup Rhabdomyosarcoma Studies I and II: clinicopathologic correlation. J Clin Oncol 1988 Jan; 6(1): 67–75

    PubMed  Google Scholar 

  39. Leuschner I, NewtonJr WA, Schmidt D, et al. Spindle cell variants of embryonal rhabdomyosarcoma in the paratesticular region: a report of the Intergroup Rhabdomyosarcoma Study. Am J Surg Pathol 1993 Mar; 17(3): 221–30

    Article  PubMed  CAS  Google Scholar 

  40. Shapiro DN, Sublett JE, Li B, et al. Fusion of PAX3 to a member of the forkhead family of transcription factors in human alveolar rhabdomyosarcoma. Cancer Res 1993 Nov 1; 53(21): 5108–12

    PubMed  CAS  Google Scholar 

  41. Galili N, Davis RJ, Fredericks WJ, et al. Fusion of a fork head domain gene to PAX3 in the solid tumour alveolar rhabdomyosarcoma. Nat Genet 1993 Nov; 5(3): 230–5

    Article  PubMed  CAS  Google Scholar 

  42. Barr FG, Galili N, Holick J, et al. Rearrangement of the PAX3 paired box gene in the paediatric solid tumour alveolar rhabdomyosarcoma. Nat Genet 1993 Feb; 3(2): 113–7

    Article  PubMed  CAS  Google Scholar 

  43. Davis RJ, D’Cruz CM, Lovell MA, et al. Fusion of PAX7 to FKHR by the variant t(l;13)(p36;ql4) translocation in alveolar rhabdomyosarcoma. Cancer Res 1994 Jun 1; 54(11): 2869–72

    PubMed  CAS  Google Scholar 

  44. Barr FG, Qualman SJ, Macris MH, et al. Genetic heterogeneity in the alveolar rhabdomyosarcoma subset without typical gene fusions. Cancer Res 2002 Aug 15; 62(16): 4704–10

    PubMed  CAS  Google Scholar 

  45. Sorensen PH, Lynch JC, Qualman SJ, et al. PAX3-FKHR and PAX7-FKHR gene fusions are prognostic indicators in alveolar rhabdomyosarcoma: a report from the children’s oncology group. J Clin Oncol 2002 Jun 1; 20(11): 2672–9

    Article  PubMed  CAS  Google Scholar 

  46. Parham DM, Qualman SJ, Teot L, et al. Correlation between histology and PAX/ FKHR fusion status in alveolar rhabdomyosarcoma: a report from the Children’s Oncology Group. Am J Surg Pathol 2007 Jun; 31(6): 895–901

    Article  PubMed  Google Scholar 

  47. Asmar L, Gehan EA, Newton WA, et al. Agreement among and within groups of pathologists in the classification of rhabdomyosarcoma and related childhood sarcomas: report of an international study of four pathology classifications. Cancer 1994 Nov 1; 74(9): 2579–88

    Article  PubMed  CAS  Google Scholar 

  48. Newton Jr WA, Gehan EA, Webber BL, et al. Classification of rhabdomy-osarcomas and related sarcomas. Pathologic aspects and proposal for a new classification: an Intergroup Rhabdomyosarcoma study. Cancer 1995 Sep 15; 76(6): 1073–85

    Article  PubMed  Google Scholar 

  49. Qualman SJ, Coffin CM, Newton WA, et al. Intergroup rhabdomyosarcoma study: update for pathologists. Pediatr Dev Pathol 1998 Nov–Dec; 1(6): 550–61

    Article  PubMed  CAS  Google Scholar 

  50. Tibshirani R, Hastie T, Narasimhan B, et al. Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc Natl Acad Sci U S A 2002 May 14; 99(10): 6567–72

    Article  PubMed  CAS  Google Scholar 

  51. Tan Y, Shi L, Tong W, et al. Multi-class tumor classification by discriminant partial least squares using microarray gene expression data and assessment of classification models. Comput Biol Chem 2004 Jul; 28(3): 235–44

    Article  PubMed  CAS  Google Scholar 

  52. Zhou X, Wang X, Dougherty ER. Binarization of microarray data on the basis of a mixture model. Mol Cancer Ther 2003 Jul; 2(7): 679–84

    PubMed  CAS  Google Scholar 

  53. Bicciato S, Luchini A, Di Bello C. PCA disjoint models for multiclass cancer analysis using gene expression data. Bioinformatics 2003 Mar 22; 19(5): 571–8

    Article  PubMed  CAS  Google Scholar 

  54. Pal NR, Aguan K, Sharma A, et al. Discovering biomarkers from gene expression data for predicting cancer subgroups using neural networks and relational fuzzy clustering. BMC Bioinformatics 2007; 8: 5

    Article  PubMed  CAS  Google Scholar 

  55. Fu LM, Fu-Liu CS. Evaluation of gene importance in microarray data based upon probability of selection. BMC Bioinformatics 2005; 6: 67

    Article  PubMed  CAS  Google Scholar 

  56. Albrecht A, Vinterbo SA, Ohno-Machado L. An Epicurean learning approach to gene-expression data classification. Artif Intell Med 2003 May; 28(1): 75–87

    Article  PubMed  Google Scholar 

  57. Joshi D, Anderson JR, Paidas C, et al. Age is an independent prognostic factor in rhabdomyosarcoma: a report from the Soft Tissue Sarcoma Committee of the Children’s Oncology Group. Pediatr Blood Cancer 2004 Jan; 42(1): 64–73

    Article  PubMed  CAS  Google Scholar 

  58. Grundy R, Anderson J, Gaze M, et al. Congenital alveolar rhabdomyosarcoma: clinical and molecular distinction from alveolar rhabdomyosarcoma in older children. Cancer 2001 Feb 1; 91(3): 606–12

    Article  PubMed  CAS  Google Scholar 

  59. De Bortoli M, Castellino RC, Skapura DG, et al. Patched haploinsufficient mouse rhabdomyosarcoma overexpress secreted phosphoprotein 1 and matrix metal-loproteinases. Eur J Cancer 2007 May; 43(8): 1308–17

    Article  CAS  Google Scholar 

  60. Dickens DS, Kozielski R, Khan J, et al. Cyclooxygenase-2 expression in pediatrie sarcomas. Pediatr Dev Pathol 2002 Jul–Aug; 5(4): 356–64

    Article  PubMed  CAS  Google Scholar 

  61. Rees H, Williamson D, Papanastasiou A, et al. The MET receptor tyrosine kinase contributes to invasive tumour growth in rhabdomyosarcomas. Growth Factors 2006 Sep; 24(3): 197–208

    Article  PubMed  CAS  Google Scholar 

  62. Scholl FA, Betts DR, Niggli FK, et al. Molecular features of a human rhabdomyosarcoma cell line with spontaneous metastatic progression. Br J Cancer 2000 Mar; 82(6): 1239–45

    Article  PubMed  CAS  Google Scholar 

  63. Yu Y, Davicioni E, Triche TJ, et al. The homeoprotein sixl transcriptionally activates multiple protumorigenic genes but requires ezrin to promote metastasis. Cancer Res 2006 Feb 15; 66(4): 1982–9

    Article  PubMed  CAS  Google Scholar 

  64. Yu Y, Khan J, Khanna C, et al. Expression profiling identifies the cytoskeletal organizer ezrin and the developmental homeoprotein six-1 as key metastatic regulators. Nat Med 2004 Feb; 10(2): 175–81

    Article  PubMed  CAS  Google Scholar 

  65. Langenau DM, Keefe MD, Storer NY, et al. Effects of RAS on the genesis of embryonal rhabdomyosarcoma. Genes Dev 2007 Jun 1; 21(11): 1382–95

    Article  PubMed  CAS  Google Scholar 

  66. Kappler R, Bauer R, Calzada-Wack J, et al. Profiling the molecular difference between patched- and p53-dependent rhabdomyosarcoma. Oncogene 2004 Nov 18; 23(54): 8785–95

    Article  PubMed  CAS  Google Scholar 

  67. Kappler R, Calzada-Wack J, Schnitzbauer U, et al. Molecular characterization of patched-associated rhabdomyosarcoma. J Pathol 2003 Jul; 200(3): 348–56

    Article  PubMed  CAS  Google Scholar 

  68. Carey KA, Segal D, Klein R, et al. Identification of novel genes expressed during rhabdomyosarcoma differentiation using cDNA microarrays. Pathol Int 2006 May; 56(5): 246–55

    Article  PubMed  CAS  Google Scholar 

  69. Graf Finckenstein F, Shahbazian V, Davicioni E, et al. PAX-FKHR function as pangenes by simultaneously inducing and inhibiting myogenesis. Oncogene 2008 Mar 27; 27(14): 2004–14

    Article  CAS  Google Scholar 

  70. Zhang L, Wang C. Identification of a new class of PAX3-FKHR target promoters: a role of the Pax3 paired box DNA binding domain. Oncogene 2007 Mar 8; 26(11): 1595–605

    Article  PubMed  CAS  Google Scholar 

  71. Ebauer M, Wachtel M, Niggli FK, et al. Comparative expression profiling identifies an in vivo target gene signature with TFAP2B as a mediator of the survival function of PAX3/FKHR. Oncogene 2007 Nov 8; 26(51): 7267–81

    Article  PubMed  CAS  Google Scholar 

  72. Begum S, Emani N, Cheung A, et al. Cell-type-specific regulation of distinct sets of gene targets by Pax3 and Pax3/FKHR. Oncogene 2005 Mar 10; 24(11): 1860–72

    Article  PubMed  CAS  Google Scholar 

  73. Mercado GE, Xia SJ, Zhang C, et al. Identification of PAX3-FKHR-regulated genes differentially expressed between alveolar and embryonal rhabdomy-osarcoma: focus on MYCN as a biologically relevant target. Genes Chromosomes Cancer 2008 Jun; 47(6): 510–20

    Article  PubMed  CAS  Google Scholar 

  74. Epstein JA, Shapiro DN, Cheng J, et al. Pax3 modulates expression of the c-Met receptor during limb muscle development. Proc Natl Acad Sci U S A 1996 Apr 30; 93(9): 4213–8

    Article  PubMed  CAS  Google Scholar 

  75. Bennicelli JL, Fredericks WJ, Wilson RB, et al. Wild type PAX3 protein and the PAX3-FKHR fusion protein of alveolar rhabdomyosarcoma contain potent, structurally distinct transcriptional activation domains. Oncogene 1995 Jul 6; 11(1): 119–30

    PubMed  CAS  Google Scholar 

  76. Bennicelli JL, Edwards RH, Barr FG. Mechanism for transcriptional gain of function resulting from chromosomal translocation in alveolar rhabdomyosarcoma. Proc Natl Acad Sci U S A 1996 May 28; 93(11): 5455–9

    Article  PubMed  CAS  Google Scholar 

  77. Sublett JE, Jeon IS, Shapiro DN. The alveolar rhabdomyosarcoma PAX3/FKHR fusion protein is a transcriptional activator. Oncogene 1995 Aug 3; 11(3): 545–52

    PubMed  CAS  Google Scholar 

  78. Fredericks WJ, Galili N, Mukhopadhyay S, et al. The PAX3-FKHR fusion protein created by the t(2;13) translocation in alveolar rhabdomyosarcomas is a more potent transcriptional activator than PAX3. Mol Cell Biol 1995 Mar; 15(3): 1522–35

    PubMed  CAS  Google Scholar 

  79. Ren YX, Finckenstein FG, Abdueva DA, et al. Mouse mesenchymal stem cells expressing PAX-FKHR form alveolar rhabdomyosarcomas by cooperating with secondary mutations. Cancer Res 2008 Aug 15; 68(16): 6587–97

    Article  PubMed  CAS  Google Scholar 

  80. Scuoppo C, Riess I, Schmitt-Ney M, et al. The oncogenic transcription factor PAX3-FKHR can convert fibroblasts into contractile myotubes. Exp Cell Res 2007 Jul 1; 313(11): 2308–17

    Article  PubMed  CAS  Google Scholar 

  81. Finckenstein FG, Davicioni E, Osborn KG, et al. Transgenic mice expressing PAX3-FKHR have multiple defects in muscle development, including ectopic skeletal myogenesis in the developing neural tube. Transgenic Res 2006 Oct; 15(5): 595–614

    Article  PubMed  CAS  Google Scholar 

  82. Khan J, Bittner ML, Saal LH, et al. cDNA microarrays detect activation of a myogenic transcription program by the PAX3-FKHR fusion oncogene. Proc Natl Acad Sci U S A 1999 Nov 9; 96(23): 13264–9

    Article  PubMed  CAS  Google Scholar 

  83. Morotti RA, Nicol KK, Parham DM, et al. An immunohistochemical algorithm to facilitate diagnosis and subtyping of rhabdomyosarcoma: the Children’s Oncology Group experience. Am J Surg Pathol 2006 Aug; 30(8): 962–8

    Article  PubMed  Google Scholar 

  84. Kumar S, Perlman E, Harris CA, et al. Myogenin is a specific marker for rhabdomyosarcoma: an immunohistochemical study in paraffin-embedded tissues. Mod Pathol 2000 Sep; 13(9): 988–93

    Article  PubMed  CAS  Google Scholar 

  85. Dias P, Chen B, Dilday B, et al. Strong immunostaining for myogenin in rhabdomyosarcoma is significantly associated with tumors of the alveolar subclass. Am J Pathol 2000 Feb; 156(2): 399–408

    Article  PubMed  CAS  Google Scholar 

  86. Wachtel M, Runge T, Leuschner I, et al. Subtype and prognostic classification of rhabdomyosarcoma by immunohistochemistry. J Clin Oncol 2006 Feb 10; 24(5): 816–22

    Article  PubMed  CAS  Google Scholar 

  87. Ganti R, Skapek SX, Zhang J, et al. Expression and genomic status of EGFR and ErbB-2 in alveolar and embryonal rhabdomyosarcoma. Mod Pathol 2006 Sep; 19(9): 1213–20

    Article  PubMed  CAS  Google Scholar 

  88. Kelly KM, Womer RB, Sorensen PH, et al. Common and variant gene fusions predict distinct clinical phenotypes in rhabdomyosarcoma. J Clin Oncol 1997 May; 15(5): 1831–6

    PubMed  CAS  Google Scholar 

  89. Williamson D, Lu YJ, Gordon T, et al. Relationship between MYCN copy number and expression in rhabdomyosarcomas and correlation with adverse prognosis in the alveolar subtype. J Clin Oncol 2005 Feb 1; 23(4): 880–8

    Article  PubMed  CAS  Google Scholar 

  90. Ayan I, Dogan O, Kebudi R, et al. Immunohistochemical detection of p53 protein in rhabdomyosarcoma: association with clinicopathological features and outcome. J Pediatr Hematol Oncol 1997 Jan–Feb; 19(1): 48–53

    Article  PubMed  CAS  Google Scholar 

  91. Diniz G, Aktas S, Ortac R, et al. Alternative prognostic factors in pediatric embryonal rhabdomyosarcoma: Nm23 expression, proliferative activity and angiogenesis. Turk J Pediatr 2004 Jul–Sep; 46(3): 239–44

    PubMed  Google Scholar 

  92. Blandford MC, Barr FG, Lynch JC, et al. Rhabdomyosarcomas utilize developmental, myogenic growth factors for disease advantage: a report from the Children’s Oncology Group. Pediatrie Blood Cancer 2006 Mar; 46(3): 329–38

    Article  Google Scholar 

  93. Anderson J, Ramsay A, Gould S, et al. PAX3-FKHR induces morphological change and enhances cellular proliferation and invasion in rhabdomyosarcoma. Am J Pathol 2001 Sep; 159(3): 1089–96

    Article  PubMed  CAS  Google Scholar 

  94. Pizzo PA, Poplack DG. Principles and practice of pediatrie oncology. 4th ed. Philadelphia (PA): Lippincott Williams & Wilkins, 2002

    Google Scholar 

  95. Bernstein M, Kovar H, Paulussen M, et al. Ewing’s sarcoma family of tumors: current management. Oncologist 2006 May; 11(5): 503–19

    Article  PubMed  CAS  Google Scholar 

  96. Delattre O, Zucman J, Plougastel B, et al. Gene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumours. Nature 1992 Sep 10; 359(6391): 162–5

    Article  PubMed  CAS  Google Scholar 

  97. Zucman J, Melot T, Desmaze C, et al. Combinatorial generation of variable fusion proteins in the Ewing family of tumours. EMBO J 1993 Dec; 12(12): 4481–7

    PubMed  CAS  Google Scholar 

  98. Kaneko Y, Yoshida K, Handa M, et al. Fusion of an ETS-family gene, EIAF, to EWS by t(17;22)(ql2;ql2) chromosome translocation in an undifferentiated sarcoma of infancy. Genes Chromosomes Cancer 1996 Feb; 15(2): 115–21

    Article  PubMed  CAS  Google Scholar 

  99. Jeon IS, Davis JN, Braun BS, et al. A variant Ewing’s sarcoma translocation (7;22) fuses the EWS gene to the ETS gene ETV1. Oncogene 1995 Mar 16; 10(6): 1229–34

    PubMed  CAS  Google Scholar 

  100. Peter M, Couturier J, Pacquement H, et al. A new member of the ETS family fused to EWS in Ewing tumors. Oncogene 1997 Mar 13; 14(10): 1159–64

    Article  PubMed  CAS  Google Scholar 

  101. Sorensen PH, Lessnick SL, Lopez-Terrada D, et al. A second Ewing’s sarcoma translocation, t(21;22), fuses the EWS gene to another ETS-family transcription factor, ERG. Nat Genet 1994 Feb; 6(2): 146–51

    Article  PubMed  CAS  Google Scholar 

  102. Sandberg AA, Bridge JA. Updates on cytogenetics and molecular genetics of bone and soft tissue tumors: Ewing sarcoma and peripheral primitive neuroectodermal tumors. Cancer Genet Cytogenet 2000 Nov; 123(1): 1–26

    Article  PubMed  CAS  Google Scholar 

  103. Bennicelli JL, Barr FG. Genetics and the biologic basis of sarcomas. Curr Opin Oncol 1999 Jul; 11(4): 267–74

    Article  PubMed  CAS  Google Scholar 

  104. Barr FG, Womer RB. Molecular diagnosis of ewing family tumors: too many fusions? J Mol Diagn 2007 Sep; 9(4): 437–40

    Article  PubMed  Google Scholar 

  105. Kovar H, Jugovic D, Melot T, et al. Cryptic exons as a source of increased diversity of Ewing tumor-associated EWS-FLI1 chimeric products. Genomics 1999 Sep 15; 60(3): 371–4

    Article  PubMed  CAS  Google Scholar 

  106. Ng TL, O’Sullivan MJ, Pallen CJ, et al. Ewing sarcoma with novel translocation t(2;16) producing an in-frame fusion of FUS and FEV. J Mol Diagn 2007 Sep; 9(4): 459–63

    Article  PubMed  Google Scholar 

  107. Shing DC, McMullan DJ, Roberts P, et al. FUS/ERG gene fusions in Ewing’s tumors. Cancer Res 2003 Aug 1; 63(15): 4568–76

    PubMed  CAS  Google Scholar 

  108. Lewis TB, Coffin CM, Bernard PS. Differentiating Ewing’s sarcoma from other round blue cell tumors using a RT-PCR translocation panel on formalin-fixed paraffin-embedded tissues. Mod Pathol 2007 Mar; 20(3): 397–404

    Article  PubMed  CAS  Google Scholar 

  109. Hu-Lieskovan S, Zhang J, Wu L, et al. EWS-FLI1 fusion protein up-regulates critical genes in neural crest development and is responsible for the observed phenotype of Ewing’s family of tumors. Cancer Res 2005 Jun 1; 65(11): 4633–44

    Article  PubMed  CAS  Google Scholar 

  110. Smith R, Owen LA, Trem DJ, et al. Expression profiling of EWS/FLI identifies NKX2.2 as a critical target gene in Ewing’s sarcoma. Cancer Cell 2006 May; 9(5): 405–16

    Article  PubMed  CAS  Google Scholar 

  111. Staege MS, Hutter C, Neumann I, et al. DNA microarrays reveal relationship of Ewing family tumors to both endothelial and fetal neural crest-derived cells and define novel targets. Cancer Res 2004 Nov 15; 64(22): 8213–21

    Article  PubMed  CAS  Google Scholar 

  112. Bandres E, Malumbres R, Escalada A, et al. Gene expression profile of ewing sarcoma cell lines differing in their EWS-FLI1 fusion type.J Pediatr Hematol Oncol 2005 Oct; 27(10): 537–42

    Article  PubMed  Google Scholar 

  113. Aryee DN, Sommergruber W, Muehlbacher K, et al. Variability in gene expression patterns of Ewing tumor cell lines differing in EWS-FLI1 fusion type. Lab Invest 2000 Dec; 80(12): 1833–44

    Article  PubMed  CAS  Google Scholar 

  114. Nishimori H, Sasaki Y, Yoshida K, et al. The Id2 gene is a novel target of transcriptional activation by EWS-ETS fusion proteins in Ewing family tumors. Oncogene 2002 Nov 28; 21(54): 8302–9

    Article  PubMed  CAS  Google Scholar 

  115. Braunreiter CL, Hancock JD, Coffin CM, et al. Expression of EWS-ETS fusions in NIH3T3 cells reveals significant differences to Ewing’s sarcoma. Cell Cycle 2006 Dec; 5(23): 2753–9

    Article  PubMed  CAS  Google Scholar 

  116. Im YH, Kim HT, Lee C, et al. EWS-FLI1, EWS-ERG, and EWS-ETV1 oncoproteins of Ewing tumor family all suppress transcription of transforming growth factor beta type II receptor gene.Cancer Res 2000 Mar 15; 60(6): 1536–40

    PubMed  CAS  Google Scholar 

  117. Ginsberg JP, deAlava E, Ladanyi M, et al. EWS-FLI1 and EWS-ERG gene fusions are associated with similar clinical phenotypes in Ewing’s sarcoma. J Clin Oncol 1999 Jun; 17(6): 1809–14

    PubMed  CAS  Google Scholar 

  118. deAlava E, Kawai A, Healey JH, et al. EWS-FLI1 fusion transcript structure is an independent determinant of prognosis in Ewing’s sarcoma. J Clin Oncol 1998 Apr; 16(4): 1248–55

    PubMed  Google Scholar 

  119. Lin PP, Brody RI, Hamelin AC, et al. Differential transactivation by alternative EWS-FLI1 fusion proteins correlates with clinical heterogeneity in Ewing’s sarcoma. Cancer Res 1999 Apr 1; 59(7): 1428–32

    PubMed  CAS  Google Scholar 

  120. Zoubek A, Dockhorn-Dworniczak B, Delattre O, et al. Does expression of different EWS chimeric transcripts define clinically distinct risk groups of Ewing tumor patients? J Clin Oncol 1996 Apr; 14(4): 1245–51

    PubMed  CAS  Google Scholar 

  121. Avigad S, Cohen IJ, Zilberstein J, et al. The predictive potential of molecular detection in the nonmetastatic Ewing family of tumors. Cancer 2004 Mar 1; 100(5): 1053–8

    Article  PubMed  Google Scholar 

  122. Terrier P, Llombart-Bosch A, Contesso G. Small round blue cell tumors in bone: prognostic factors correlated to Ewing’s sarcoma and neuroectodermal tumors. Semin Diagn Pathol 1996 Aug; 13(3): 250–7

    PubMed  CAS  Google Scholar 

  123. Burchill SA. Ewing’s sarcoma: diagnostic, prognostic, and therapeutic implications of molecular abnormalities. J Clin Pathol 2003 Feb; 56(2): 96–102

    Article  PubMed  CAS  Google Scholar 

  124. Ramaswamy S, Ross KN, Lander ES, et al. A molecular signature of metastasis in primary solid tumors.Nat Genet 2003 Jan; 33(1): 49–54

    Article  PubMed  CAS  Google Scholar 

  125. Haldar M, Hancock JD, Coffin CM, et al. A conditional mouse model of synovial sarcoma: insights into a myogenic origin. Cancer Cell 2007 Apr; 11(4): 375–88

    Article  PubMed  CAS  Google Scholar 

  126. Sandberg AA, Bridge JA. Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors: synovial sarcoma. Cancer Genet Cytogenet 2002 Feb; 133(1): 1–23

    Article  PubMed  CAS  Google Scholar 

  127. Sun B, Sun Y, Wang J, et al. The diagnostic value of SYT-SSX detected by reverse transcriptase-polymerase chain reaction (RT-PCR) and fluorescence in situ hybridization (FISH) for synovial sarcoma: a review and prospective study of 255 cases. Cancer Sci 2008 Jul; 99(7): 1355–61

    Article  PubMed  CAS  Google Scholar 

  128. Crew AJ, Clark J, Fisher C, et al. Fusion of SYT to two genes, SSX1 and SSX2, encoding proteins with homology to the Kruppel-associated box in human synovial sarcoma. EMBO J 1995 May 15; 14(10): 2333–40

    PubMed  CAS  Google Scholar 

  129. Clark J, Rocques PJ, Crew AJ, et al. Identification of novel genes, SYT and SSX, involved in the t(X;18)(pll.2;q11.2) translocation found in human synovial sarcoma. Nat Genet 1994 Aug; 7(4): 502–8

    Article  PubMed  CAS  Google Scholar 

  130. Amary MF, Berisha F, Bernardi Fdel C, et al. Detection of SS18-SSX fusion transcripts in formalin-fixed paraffin-embedded neoplasms: analysis of conventional RT-PCR, qRT-PCR and dual color FISH as diagnostic tools for synovial sarcoma.Mod Pathol 2007 Apr; 20(4): 482–96

    Article  PubMed  CAS  Google Scholar 

  131. Folpe AL, Schmidt RA, Chapman D, et al. Poorly differentiated synovial sarcoma: immunohistochemical distinction from primitive neuroectodermal tumors and high-grade malignant peripheral nerve sheath tumors. Am J Surg Pathol 1998 Jun; 22(6): 673–82

    Article  PubMed  CAS  Google Scholar 

  132. Henderson SR, Guiliano D, Presneau N, et al. A molecular map of mesenchymal tumors. Genome Biol 2005; 6(9): R76

    Article  PubMed  CAS  Google Scholar 

  133. Skubitz KM, Skubitz AP. Characterization of sarcomas by means of gene expression. J Lab Clin Med2004 Aug; 144(2): 78–91

    Article  PubMed  CAS  Google Scholar 

  134. Tschoep K, Kohlmann A, Schlemmer M, et al. Gene expression profiling in sarcomas. Crit Rev Oncol Hematol 2007 Aug; 63(2): 111–24

    Article  PubMed  Google Scholar 

  135. Nielsen TO, Hsu FD, O’Connell X, et al. Tissue microarray validation of epidermal growth factor receptor and SALL2 in synovial sarcoma with comparison to tumors of similar histology. Am J Pathol 2003 Oct; 163(4): 1449–56

    Article  PubMed  CAS  Google Scholar 

  136. Mendelsohn J, Baselga J. Epidermal growth factor receptor targeting in cancer. Semin Oncol 2006 Aug; 33(4): 369–85

    Article  PubMed  CAS  Google Scholar 

  137. Terry J, Saito T, Subramanian S, et al. TLEl as a diagnostic immunohistochemical marker for synovial sarcoma emerging from gene expression profiling studies. Am J Surg Pathol 2007 Feb; 31(2): 240–6

    Article  PubMed  Google Scholar 

  138. Bergh P, Meis-Kindblom JM, Gherlinzoni F, et al. Synovial sarcoma: identification of low and high risk groups. Cancer 1999 Jun 15; 85(12): 2596–607

    Article  PubMed  CAS  Google Scholar 

  139. Kawai A, Woodruff J, Healey JH, et al. SYT-SSX gene fusion as a determinant of morphology and prognosis in synovial sarcoma. N Engl J Med 1998 Jan 15; 338(3): 153–60

    Article  PubMed  CAS  Google Scholar 

  140. Inagaki H, Nagasaka T, Otsuka T, et al. Association of SYT-SSX fusion types with proliferative activity and prognosis in synovial sarcoma. Mod Pathol 2000 May; 13(5): 482–8

    Article  PubMed  CAS  Google Scholar 

  141. Nilsson G, Skytting B, Xie Y, et al. The SYT-SSX1 variant of synovial sarcoma is associated with a high rate of tumor cell proliferation and poor clinical outcome. Cancer Res 1999 Jul 1; 59(13): 3180–4

    PubMed  CAS  Google Scholar 

  142. Panagopoulos I, Mertens F, Isaksson M, et al. Clinical impact of molecular and cytogenetic findings in synovial sarcoma. Genes Chromosomes Cancer 2001 Aug; 31(4): 362–72

    Article  PubMed  CAS  Google Scholar 

  143. Ladanyi M, Antonescu CR, Leung DH, et al. Impact of SYT-SSX fusion type on the clinical behavior of synovial sarcoma: a multi-institutional retrospective study of 243 patients. Cancer Res 2002 Jan 1; 62(1): 135–40

    PubMed  CAS  Google Scholar 

  144. Guillou L, Benhattar J, Bonichon F, et al. Histologic grade, but not SYT-SSX fusion type, is an important prognostic factor in patients with synovial sarcoma: a multicenter, retrospective analysis. J Clin Oncol 2004 Oct 15; 22(20): 4040–50

    Article  PubMed  Google Scholar 

  145. Ladanyi M. Correlates of SYT-SSX fusion type in synovial sarcoma: getting more complex but also more interesting? J Clin Oncol 2005 May 20; 23(15): 3638–3639; 3639-40

    Article  PubMed  Google Scholar 

  146. dosSantos NR, deBruijn DR, van Kessel AG. Molecular mechanisms underlying human synovial sarcoma development. Genes Chromosomes Cancer 2001 Jan; 30(1): 1–14

    Article  PubMed  Google Scholar 

  147. Yang K, Lui WO, Xie Y, et al. Co-existence of SYT-SSX1 and SYT-SSX2 fusions in synovial sarcomas. Oncogene2002 Jun 13; 21(26): 4181–90

    Article  PubMed  CAS  Google Scholar 

  148. Tang N, Song WX, Luo J, et al. Osteosarcoma development and stem cell differentiation. Clin Orthop Relat Res 2008 Sep; 466(9): 2114–30

    Article  PubMed  Google Scholar 

  149. Hayden JB, Hoang BH. Osteosarcoma: basic science and clinical implications. Orthop Clin North Am 2006 Jan; 37(1): 1–7

    Article  PubMed  Google Scholar 

  150. Klein MJ, Siegal GP. Osteosarcoma: anatomic and histologic variants. Am J Clin Pathol 2006 Apr; 125(4): 555–81

    PubMed  Google Scholar 

  151. Meyers PA, Heller G, Healey J, et al. Chemotherapy for nonmetastatic osteogenic sarcoma: the Memorial Sloan-Kettering experience.J Clin Oncol 1992 Jan; 10(1): 5–15

    PubMed  CAS  Google Scholar 

  152. Meyers PA, Heller G, Healey JH, et al. Osteogenic sarcoma with clinically detectable metastasis at initial presentation. J Clin Oncol 1993 Mar; 11(3): 449–53

    PubMed  CAS  Google Scholar 

  153. Ragland BD, Bell WC, Lopez RR, et al. Cytogenetics and molecular biology of osteosarcoma. Lab Invest 2002 Apr; 82(4): 365–73

    Article  PubMed  Google Scholar 

  154. Sandberg AA, Bridge JA. Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors: osteosarcoma and related tumors. Cancer Genet Cytogenet 2003 Aug; 145(1): 1–30

    Article  PubMed  CAS  Google Scholar 

  155. Schofield D, Wai D, Triche T. Expression profiling of bone tumors. In:Ladanyi M, Gerald WL, editors. Expression profiling of human tumors. Totowa (NJ): Humana Press, 2003: 359–91

    Chapter  Google Scholar 

  156. Neale G, Su X, Morton CL, et al. Molecular characterization of the pediatric preclinical testing panel. Clin Cancer Res 2008 Jul 15; 14(14): 4572–83

    Article  PubMed  CAS  Google Scholar 

  157. Walkley CR, Qudsi R, Sankaran VG, et al. Conditional mouse osteosarcoma, dependent on p53 loss and potentiated by loss of Rb, mimics the human disease. Genes Dev 2008 Jun 15; 22(12): 1662–76

    Article  PubMed  CAS  Google Scholar 

  158. Sadikovic B, Yoshimoto M, Al-Romaih K, et al. In vitro analysis of integrated global high-resolution DNA methylation profiling with genomic imbalance and gene expression in osteosarcoma. PLoS ONE 2008; 3(7): e2834

    Article  PubMed  CAS  Google Scholar 

  159. Varelias A, Koblar SA, Cowled PA, et al. Human osteosarcoma expresses specific ephrin profiles: implications for tumorigenicity and prognosis. Cancer2002 Aug 15; 95(4): 862–9

    Article  PubMed  Google Scholar 

  160. Dhaini HR, Thomas DG, Giordano TJ, et al. Cytochrome P450 CYP3A4/5 expression as a biomarker of outcome in osteosarcoma. J Clin Oncol 2003 Jul 1; 21(13): 2481–5

    Article  PubMed  CAS  Google Scholar 

  161. Hoang BH, Kubo T, Healey JH, et al. Expression of LDL receptor-related protein 5 (LRP5) as a novel marker for disease progression in high-grade osteosarcoma. Int J Cancer 2004 Mar; 109(1): 106–11

    Article  PubMed  CAS  Google Scholar 

  162. Srivastava A, Fuchs B, Zhang K, et al. High WT1 expression is associated with very poor survival of patients with osteogenic sarcoma metastasis. Clin Cancer Res 2006 Jul 15; 12 (14 Pt 1): 4237–43

    Article  PubMed  CAS  Google Scholar 

  163. Perbal B, Zuntini M, Zambelli D, et al. Prognostic Value of CCN3 in osteosarcoma. Clin Cancer Res 2008 Feb 1; 14(3): 701–9

    Article  PubMed  CAS  Google Scholar 

  164. Kim SY, Lee CH, Midura BV, et al. Inhibition of the CXCR4/CXCL12 chemokine pathway reduces the development of murine pulmonary metastases. Clin Exp Metastasis 2008; 25(3): 201–11

    Article  PubMed  CAS  Google Scholar 

  165. Laverdiere C, Hoang BH, Yang R, et al. Messenger RNA expression levels of CXCR4 correlate with metastatic behavior and outcome in patients with osteosarcoma. Clin Cancer Res 2005 Apr 1; 11(7): 2561–7

    Article  PubMed  CAS  Google Scholar 

  166. vonLuettichau I, Segerer S, Wechselberger A, et al. A complex pattern of chemokine receptor expression is seen in osteosarcoma. BMC Cancer 2008 Jan 24; 8(1): 23

    Article  CAS  Google Scholar 

  167. Onda M, Matsuda S, Higaki S, et al. ErbB-2 expression is correlated with poor prognosis for patients with osteosarcoma. Cancer 1996 Jan 1; 77(1): 71–8

    Article  PubMed  CAS  Google Scholar 

  168. Gorlick R, Huvos AG, Heller G, et al. Expression of HER2/erbB-2 correlates with survival in osteosarcoma. J Clin Oncol 1999 Sep; 17(9): 2781–8

    PubMed  CAS  Google Scholar 

  169. Morris CD, Gorlick R, Huvos G, et al. Human epidermal growth factor receptor 2 as a prognostic indicator in osteogenic sarcoma. Clin Orthop Relat Res 2001 Jan; 382: 59–65

    Article  PubMed  Google Scholar 

  170. Akatsuka T, Wada T, Kokai Y, et al. ErbB2 expression is correlated with increased survival of patients with osteosarcoma. Cancer 2002 Mar 1; 94(5): 1397–404

    Article  PubMed  CAS  Google Scholar 

  171. Anninga JK, van de Vijver MJ, Cleton-Jansen AM, et al. Overexpression of the HER-2 oncogene does not play a role in high-grade osteosarcomas. Eur J Cancer 2004 May; 40(7): 963–70

    Article  PubMed  CAS  Google Scholar 

  172. Rakesh Kumar V, Gupta N, et al. Prognostic and predictive value of c-erbB2 overexpression in osteogenic sarcoma.J Cancer Res Ther 2006 Jan–Mar; 2(1): 20–3

    Article  PubMed  Google Scholar 

  173. Yalcin B, Gedikoglu G, Kutluk T, et al. C-erbB-2 expression and prognostic significance in osteosarcoma. Pediatric Blood Cancer 2008 Aug; 51(2): 222–7

    Article  PubMed  Google Scholar 

  174. Kaseta MK, Khaldi L, Gomatos IP, et al. Prognostic value of bax, bcl-2, and p53 staining in primary osteosarcoma. J Surg Oncol 2008 Mar 1; 97(3): 259–66

    Article  PubMed  Google Scholar 

  175. Goeman JJ, Oosting J, Cleton-Jansen AM, et al. Testing association of a pathway with survival using gene expression data. Bioinformatics 2005 May 1; 21(9): 1950–7

    Article  PubMed  CAS  Google Scholar 

  176. Dalla-Torre CA, Yoshimoto M, Lee CH, et al. Effects of THBS3, SPARC and SPP1 expression on biological behavior and survival in patients with osteosarcoma. BMC Cancer 2006; 6: 237

    Article  PubMed  CAS  Google Scholar 

  177. Dalla-Torre CA, deToledo SR, Yoshimoto M, et al. Expression of major vault protein gene in osteosarcoma patients. J Orthop Res 2007 Jul; 25(7): 958–63

    Article  PubMed  CAS  Google Scholar 

  178. Fellenberg J, Dechant MJ, Ewerbeck V, et al. Identification of drug-regulated genes in osteosarcoma cells. Int J Cancer 2003 Jul 10; 105(5): 636–43

    Article  PubMed  CAS  Google Scholar 

  179. Fellenberg J, Bernd L, Delling G, et al. Prognostic significance of drug-regulated genes in high-grade osteosarcoma. Mod Pathol 2007 Oct; 20(10): 1085–94

    Article  PubMed  CAS  Google Scholar 

  180. Chano T, Mori K, Scotlandi K, et al. Differentially expressed genes in multidrug resistant variants of U-2 OS human osteosarcoma cells. Oncol Rep 2004 Jun; 11(6): 1257–63

    PubMed  CAS  Google Scholar 

  181. Mori K, Berreur M, Blanchard F, et al. Receptor activator of nuclear factor-kappaB ligand (RANKL) directly modulates the gene expression profile of RANK-positive Saos-2 human osteosarcoma cells. Oncol Rep 2007 Dec; 18(6): 1365–71

    PubMed  CAS  Google Scholar 

  182. Rajkumar T, Yamuna M. Multiple pathways are involved in drug resistance to doxorubicin in an osteosarcoma cell line. Anticancer Drugs 2008 Mar; 19(3): 257–65

    Article  PubMed  CAS  Google Scholar 

  183. Walters DK, Steinmann P, Langsam B, et al. Identification of potential chemoresis-tance genes in osteosarcoma. Anticancer Res 2008 Mar–Apr; 28(2A): 673–9

    PubMed  CAS  Google Scholar 

  184. Ii S, Ueda Y, Shimazaki M, et al. Identification of novel genes involved in the synergistic antitumor effect of caffeine in osteosarcoma cells using cDNA macroarray. Anticancer Res 2008 Mar–Apr; 28(2A): 645–53

    PubMed  Google Scholar 

  185. Gillette JM, Chan DC, Nielsen-Preiss SM. Annexin 2 expression is reduced in human osteosarcoma metastases.J Cell Biochem2004 Jul 1; 92(4): 820–32

    Article  PubMed  CAS  Google Scholar 

  186. Duan X, Jia SF, Zhou Z, et al. Association of alphavbeta3 integrin expression with the metastatic potential and migratory and chemotactic ability of human osteosarcoma cells. Clin Exp Metastasis 2004; 21(8): 747–53

    Article  PubMed  CAS  Google Scholar 

  187. Husmann K, Muff R, Bolander ME, et al. Cathepsins and osteosarcoma: expression analysis identifies cathepsin K as an indicator of metastasis. Mol Carcinog 2008 Jan; 47(1): 66–73

    Article  PubMed  CAS  Google Scholar 

  188. Eppert K, Wunder JS, Aneliunas V, et al. Altered expression and deletion of RMO1 in osteosarcoma. Int J Cancer 2005 May 1; 114(5): 738–46

    Article  PubMed  CAS  Google Scholar 

  189. Koshkina NV, Khanna C, Mendoza A, et al. Fas-negative osteosarcoma tumor cells are selected during metastasis to the lungs: the role of the Fas pathway in the metastatic process of osteosarcoma.Mol Cancer Res 2007 Oct; 5(10): 991–9

    Article  PubMed  CAS  Google Scholar 

  190. Gordon N, Koshkina NV, Jia SF, et al. Corruption of the Fas pathway delays the pulmonary clearance of murine osteosarcoma cells, enhances their metastatic potential, and reduces the effect of aerosol gemcitabine.Clin Cancer Res 2007 Aug 1; 13 (15 Pt 1): 4503–10

    Article  PubMed  CAS  Google Scholar 

  191. Fuchs B, Mahlum E, Haider C, et al. High expression of tumor endothelial marker 7 is associated with metastasis and poor survival of patients with osteogenic sarcoma. Gene 2007 Sep 15; 399(2): 137–43

    Article  PubMed  CAS  Google Scholar 

  192. deNigris F, Rossiello R, Schiano C, et al. Deletion of Yin Yang 1 protein in osteosarcoma cells on cell invasion and CXCR4/angiogenesis and metastasis. Cancer Res 2008 Mar 15; 68(6): 1797–808

    Article  PubMed  CAS  Google Scholar 

  193. Khanna C, Wan X, Bose S, et al. The membrane-cytoskeleton linker ezrin is necessary for osteosarcoma metastasis. Nat Med 2004 Feb; 10(2): 182–6

    Article  PubMed  CAS  Google Scholar 

  194. Wan X, Mendoza A, Khanna C, et al. Rapamycin inhibits ezrin-mediated metastat-ic behavior in a murine model of osteosarcoma. Cancer Res 2005 Mar 15; 65(6): 2406–11

    Article  PubMed  CAS  Google Scholar 

  195. Zucchini C, Bianchini M, Valvassori L, et al. Identification of candidate genes involved in the reversal of malignant phenotype of osteosarcoma cells transfected with the liver/bone/kidney alkaline phosphatase gene. Bone 2004 Apr; 34(4): 672–9

    Article  PubMed  CAS  Google Scholar 

  196. Cantiani L, Manara MC, Zucchini C, et al. Caveolin-1 reduces osteosarcoma metastases by inhibiting c-Src activity and met signaling. Cancer Res 2007 Aug 15; 67(16): 7675–85

    Article  PubMed  CAS  Google Scholar 

  197. Manara MC, Bernard G, Lollini PL, et al. CD99 acts as an oncosuppressor in osteosarcoma. Mol Biol Cell 2006 Apr; 17(4): 1910–21

    Article  PubMed  CAS  Google Scholar 

  198. Zucchini C, Rocchi A, Manara MC, et al. Apoptotic genes as potential markers of metastatic phenotype in human osteosarcoma cell lines.Int J Oncol 2008 Jan; 32(1): 17–31

    PubMed  CAS  Google Scholar 

  199. Dumur CI, Lyons-Weiler M, Sciulli C, et al. Interlaboratory performance of a microarray-based gene expression test to determine tissue of origin in poorly differentiated and undifferentiated cancers. J Mol Diagn 2008 Jan; 10(1): 67–77

    Article  PubMed  CAS  Google Scholar 

  200. Abdueva D, Wing MR, Schaub B, et al. Experimental comparison and evaluation of the Affymetrix exon and U133Plus2 GeneChip arrays. PLoS ONE 2007; 2(9): e913

    Article  PubMed  CAS  Google Scholar 

Download references

Acknolwedgments

No sources of funding were used to assist in the preparation of this review. The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Anderson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davicioni, E., Wai, D.H. & Anderson, M.J. Diagnostic and Prognostic Sarcoma Signatures. Mol Diag Ther 12, 359–374 (2008). https://doi.org/10.1007/BF03256302

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03256302

Keywords

Navigation