Skip to main content
Log in

Surface hydrolysis of fibrous poly(ε-caprolactone) scaffolds for enhanced osteoblast adhesion and proliferation

  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

A procedure for the surface hydrolysis of an electrospun poly(ε-caprolactone) (PCL) fibrous scaffold was developed to enhance the adhesion and proliferation of osteoblasts. The surface hydrolysis of fibrous scaffolds was performed using NaOH treatment for the formation of carboxyl groups on the fiber surfaces. The hydrolysis process did not induce deformation of the fibers, and the fibers retained their diameter. The cell seeding density on the NaOH-treated PCL fibrous scaffolds was more pronounced than on the non-treated PCL fibers used as a control. The alkaline phosphatase activity, osteocalcin and a mineralization assay strongly supported that the surface-hydrolyzed PCL fibrous scaffolds provided more favorable environments for the proliferation and functions of osteoblasts compared to the non-treated PCL fibrous scaffolds use as a control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Luong-Van, L. Grøndahl, K. N. Chua, K. W. Leong, V. Nurcombe, and S. M. Cool,Biomaterials,27, 2042 (2006).

    Article  CAS  Google Scholar 

  2. D. S. Katti, K. W. Robinson, F. K. Ko, and C. T. Laurencin,J. Biomed. Mater. Res.,70B, 286 (2004).

    Article  CAS  Google Scholar 

  3. K. Kim, Y. K. Luu, C. Chang, D. F. Fang, B. S. Hsiao, B. Chu, and M. Hadjiargyrou,J. Control. Release,98, 47 (2004).

    Article  CAS  Google Scholar 

  4. J. Zeng, X. Xu, X. Chen, Q. Liang, X. Bian, L. Yang, and X. Jing,J. Control. Release,92, 227 (2003).

    Article  CAS  Google Scholar 

  5. E. Kenawy, G. L. Bowlin, K. Mansfield, J. Layman, D. G. Simpson, E. H. Sanders, and G. E. Wnek,J. Control. Release,81, 57 (2002).

    Article  CAS  Google Scholar 

  6. G. Verreck, I. Chun, J. Rosenblatt, J. Peeters, A. V. Dijck, J. Mensch, M. Noppe, and M. E. Brewster,J. Control. Release,92, 349 (2003).

    Article  CAS  Google Scholar 

  7. Y. K. Luu, K. Kim, B. S. Hsiao, B. Chu, and M. Hadjiargyrou,J. Control. Release,89, 341 (2003).

    Article  CAS  Google Scholar 

  8. W. Cui, X. Li, X. Zhu, G. Yu, S. Zhou, and J. Weng,Biomacromolecules,7, 1623 (2006).

    Article  CAS  Google Scholar 

  9. C. L. Casper, N. Yamaguchi, K. L. Kiick, and J. F. Rabolt,Biomacromolecules,6, 1998 (2005).

    Article  CAS  Google Scholar 

  10. H. Park, K. Y. Lee, S. J. Lee, K. E. Park, and W. H. Park,Macromol. Res.,15, 238 (2007).

    Article  CAS  Google Scholar 

  11. H. Yoshimoto, Y. M. Shina, H. Terai, and J. P. Vacanti,Biomaterials,24, 2077 (2003).

    Article  CAS  Google Scholar 

  12. J. Chen, B. Chu, and B. S. Hsiao,J. Biomed. Mater. Res. Part A,79A, 307 (2006).

    Article  CAS  Google Scholar 

  13. M. C. Serrano, M. T. Portolés, M. Vallet-Regä, I. Izquierdo, L. Galletti, J. V. Comas, and R. Pagani,Macromol. Biosci.,5, 415 (2005).

    Article  CAS  Google Scholar 

  14. K. H. Lee, H. Y. Kim, M. S. Khil, Y. M. Ra, and D. R. Lee,Polymer,44, 1287 (2003).

    Article  CAS  Google Scholar 

  15. Y. Zhu, M. F. Leong, W. F. Ong, M. B. Chan-Park, and K. S. Chian,Biomaterials,28, 861 (2007).

    Article  CAS  Google Scholar 

  16. W. J. Li, J. A. Cooper, Jr., R. L. Mauck, and R. S. Tuan,Acta. Biomater.,2, 377 (2006).

    Article  Google Scholar 

  17. G. Ciapetti, L. Ambrosio, L. Savarino, D. Granchi, E. Cenni, N. Baldini, S. Pagani, S. Guizzardi, F. Causa, and A. Giunti,Biomaterials,24, 3815 (2003).

    Article  CAS  Google Scholar 

  18. S. E. Kim, H. K. Rha, S. Surendran, C. W. Han, S. C. Lee, H. W. Choi, Y.-W. Choi, K.-H. Lee, J. W. Rhie, and S. T. Ahn,Macromol. Res.,14, 565 (2006).

    Article  CAS  Google Scholar 

  19. Z. Cheng and S. H. Teoh,Biomaterials,25, 1991 (2004).

    Article  CAS  Google Scholar 

  20. Y. Zhu, C. Gao, and J. Shen,Biomaterials,23, 4889 (2002).

    Article  CAS  Google Scholar 

  21. G. E. Parka, M. A. Pattisona, K. Park, and T. J. Webster,Biomaterials,26, 3075 (2005).

    Article  Google Scholar 

  22. J. Gao, L. Niklason, and R. Langer,J. Biomed. Mater. Res.,42, 417 (1998).

    Article  CAS  Google Scholar 

  23. H. M. Kowalczynska and J. Kaminski,J. Cell Sci.,99, 587 (1991).

    CAS  Google Scholar 

  24. A. Curtis and J. Forrester,J. Cell Sci.,71, 17 (1984).

    CAS  Google Scholar 

  25. S. S. Kim, M. S. Park, O. Jeon, C. Y. Choi, and B. S. Kim,Biomaterials,27, 1399 (2006).

    Article  CAS  Google Scholar 

  26. K. Y. Lee, E. Alsberg, S. Hsiong, W. Comisar, J. Linderman, R. Ziff, and D. Mooney,Nano. Lett.,4, 1501 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jung-Man Kim or Sang Cheon Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, J.S., Kim, JM., Lee, S.J. et al. Surface hydrolysis of fibrous poly(ε-caprolactone) scaffolds for enhanced osteoblast adhesion and proliferation. Macromol. Res. 15, 424–429 (2007). https://doi.org/10.1007/BF03218809

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03218809

Keywords

Navigation