Skip to main content
Log in

Styrenic polymer/organoclay nanocomposite prepared viain-situ polymerization with an azoinitiator linked to an epoxy oligomer

  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

An azoinitiator linked to an epoxy oligomer, which could easily diffuse into the organoclay gallery and swell it, was used as an initiator to enhance the delamination of an organoclay, Cloisite 25A, in a matrix of styrenic polymers, poly(styrene-co-acrylonitrile) and polystyrene, during the preparation of a nanocomposite via anin-situ polymerization method. X-ray diffraction results and transmission electron microscopic observation of the morphology showed that the epoxy segment enhanced not only the delamination but also the extrication of ammonium cations from the organoclay gallery into the polymer matrix. The latter phenomenon induced the structural change of the alkyl group of ammonium cations in the gallery from a bilayer to monolayer structure, and also decreased the glass-rubber transition temperature as measured by a differential scanning calorimeter and dynamic mechanical analyzer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. C. Le Baron, Z. Wang, and T. J. Pinnavaia,Appl. Clay Sci.,15, 11 (1999).

    Article  Google Scholar 

  2. E. P. Giannelis,Appl.Organometal. Chem.,12, 675 (1998).

    Article  CAS  Google Scholar 

  3. T. J. Pinnavaia and G. W. Beall, Eds.,Polymer-Clay Nanocomposites, John Wiley & Sons, New York, 2000.

    Google Scholar 

  4. L. A. Utracki,Clay-Containing Polymeric Nanocomposites, Rapra Technology Limited, Shawbury, 2004.

    Google Scholar 

  5. H. Acharya and S. K. Srivastava,Macromol. Res.,14, 132 (2006).

    Article  CAS  Google Scholar 

  6. S.-Y. Park and Y.-H. Cho,Macromol. Res.,13, 156 (2005).

    Article  CAS  Google Scholar 

  7. J.-Y. Kim, S.-H. Hwang, Y. S. Hong, W. Huh, and S.-W. Lee,Polymer (Korea),29, 87 (2005).

    CAS  Google Scholar 

  8. S.-U. Lee, I.-H. Oh, J. H. Lee, K.-Y. Choi, and S.-G. Lee,Polymer (Korea),29, 271 (2005).

    Article  CAS  Google Scholar 

  9. C. Zeng and L. J. Lee,Macromolecules,34, 4098 (2001).

    Article  CAS  Google Scholar 

  10. A. B. Morgan and J. W. Gilman,J. Appl. Polym. Sci.,87, 1329 (2003).

    Article  CAS  Google Scholar 

  11. Y. S. Choi, M. H. Choi, K. H. Wang, S. O. Kim, Y. K. Kim, and I. J. Chung,Macromolecules,34, 8978 (2001).

    Article  CAS  Google Scholar 

  12. M. W. Weimer, H. Chen, E. P. Giannelis, and D. Y. Sogah,J. Am. Chem. Soc.,121, 1615 (1999).

    Article  CAS  Google Scholar 

  13. E. Manias, A. Touny, L. Wu, K. Strawhecker, B. Lu, and T. C. Chung,Chem. Mater.,13, 3516 (2001).

    Article  CAS  Google Scholar 

  14. P. Aranda and E. Ruiz-Hitzky,Chem. Mater.,4, 1395 (1992).

    Article  CAS  Google Scholar 

  15. J. Wu and M. M. Lerner, Chem. Mater., 5, 835 (1993). (16) H. R. Fischer, L. H. Gielgens, and T. P. M. Koster,Acta Polym.,50, 122 (1999).

    Article  CAS  Google Scholar 

  16. B. Liao, M. Song, H. Liang, and Y. Pang,Polymer,42, 10007 (2001).

    Article  CAS  Google Scholar 

  17. H. M. Jeong and Y. T. Ahn,Macromol. Res.,13, 102 (2005).

    Article  CAS  Google Scholar 

  18. H. M. Jeong, M. Y. Choi, and Y. T. Ahn,Macromol. Res.,14, 312 (2006).

    Article  CAS  Google Scholar 

  19. H. M. Jeong, J. S. Choi, Y. T. Ahn, and K. H. Kwon,J. Appl. Polym. Sci.,99, 2841 (2006).

    Article  CAS  Google Scholar 

  20. M. Kawasumi, N. Hasegawa, M. Kato, A. Usuki, and A. Okada,Macromolecules,30, 6333 (1997).

    Article  CAS  Google Scholar 

  21. M. Kato, A. Usuki, and A. Okada,J. Appl. Polym. Sci.,66, 1781 (1997).

    Article  CAS  Google Scholar 

  22. A. Usuki, M. Kato, A. Okada, and T. Kurauchi,J. Appl. Polym. Sci.,63, 137 (1997).

    Article  Google Scholar 

  23. H. Ishida, S. Campbell, and J. Blackwell,Chem. Mater.,12, 1260 (2000).

    Article  CAS  Google Scholar 

  24. T. O. Ahn, J. H. Kim, J. C. Lee, H. M. Jeong, and J.-Y. Park,J. Polym. Sci., Polym. Chem.,31, 435 (1993).

    Article  CAS  Google Scholar 

  25. R. A. Vaia, R. K. Teukolsky, and E. P. Giannelis,Chem. Mater.,6, 1017 (1994).

    Article  CAS  Google Scholar 

  26. G. Lagaly,Solid State Ionics,22, 43 (1986).

    Article  CAS  Google Scholar 

  27. M. B. Ko, M. Park, J. Kim, and C. R. Choe,Kor. Polym. J.,8, 95 (2000).

    CAS  Google Scholar 

  28. J. T. Yoon, W. H. Jo, M. S. Lee, and M. B. Ko,Polymer,42, 329 (2001).

    Article  CAS  Google Scholar 

  29. M. B. Ko, J. Kim, and C. R. Choe,Korea Polym. J.,8, 120 (2000).

    CAS  Google Scholar 

  30. H. M. Jeong, B. C. Kim, E. H. Kim,J. Mater. Sci.,40, 3783 (2005).

    Article  CAS  Google Scholar 

  31. P. Uthirakumar, K. S. Nahm, Y. B. Hahn, and Y.-S. Lee,Eur. Polym. J.,40, 2437 (2004).

    Article  CAS  Google Scholar 

  32. M. W. Noh and D. C. Lee,Polym. Bull.,42, 619 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Mo Jeong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeong, H.M., Choi, M.Y., Kim, M.S. et al. Styrenic polymer/organoclay nanocomposite prepared viain-situ polymerization with an azoinitiator linked to an epoxy oligomer. Macromol. Res. 14, 610–616 (2006). https://doi.org/10.1007/BF03218732

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03218732

Keywords

Navigation