Skip to main content
Log in

Nitrogen deposition and reduction of terrestrial biodiversity: Evidence from temperate grasslands

  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

Biodiversity is thought to be essential for ecosystem stability, function and long-term sustainability. Since nitrogen is the limiting nutrient for plant growth in many terrestrial ecosystems, reactive nitrogen has the potential to reduce the diversity of terrestrial vegetation and associated biota through favouring species adapted to quickly exploiting available nutrients. Although the potential has long been recognised, only recently has enough evidence come together to show beyond reasonable doubt that these changes are already occurring. Linked together, experimental, regional/empirical, and time-series research provide a powerful argument that enhanced deposition of reactive nitrogen across Great Britain, and potentially the rest of Europe, has resulted in a significant and ongoing decline in grassland species richness and diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grime, J. P., Plant Strategies and Vegetation Processes, London: Wiley, 1979.

    Google Scholar 

  2. Phoenix, G. K., Booth, R. E., Leake, J. R. et al., Effects of enhanced nitrogen deposition and phosphorus limitation on nitrogen budgets of semi-natural grasslands, Global Change Biology, 2003, 9: 1309–1321.

    Article  Google Scholar 

  3. Power, S. A., Ashmore, M. R., Cousins, D. A., Impacts and fate of experimentally enhanced nitrogen deposited on a British Lowland Heath, Environmental Pollution, 1998, 102: 27–34.

    Article  CAS  Google Scholar 

  4. Brunsting, A. M. H., Heil, G. W., The role of nutrients in the interactions between a herbivorous beetle and some competing plant species in heathlands, Oikos, 1985, 44: 23–26.

    Article  Google Scholar 

  5. Tilman, D., Secondary succession and the pattern of plant dominance along experimental nitrogen gradients, Ecological Monogrographs, 1987, 57: 189–214.

    Article  Google Scholar 

  6. Reich, P. B., Knops, J., Tilman, D. et al., Plant diversity enhances ecosystem responses to elevated CO2 and nitrogen deposition, Nature, 2001, 410: 809–812.

    Article  CAS  PubMed  Google Scholar 

  7. Goulding, K. W. T., Bailey, N. J., Bradbury, N. J. et al., Nitrogen deposition and its contribution to nitrogen cycling and associated soil processes, New Phytologist, 1998, 139: 49–58.

    Article  CAS  Google Scholar 

  8. EMEP (Co-operative Programme for Monitoring and Evaluation of the Long-Range Transmission of Air pollutants in Europe), Transboundary Acidification and Eutrophication in Europe. Research Report no. 101, Norwegian Meterological Institute, 2000.

  9. Dise, N. B., Matzner, E., Gundersen, P., Synthesis of nitrogen pools and fluxes from European forest ecosystems, Water, Air and Soil Pollution, 1998, 105: 143–154.

    Article  CAS  Google Scholar 

  10. NEGTAP (National Expert Group on Transboundary Air Pollution), Transboundary air pollution: Acidification, eutrophication and ground-level ozone in the UK, Edinburgh, 2001.

  11. Bouwman, A. F., van Vuuren, D. P., Derwent, R. G. et al., A global analysis of acidification and eutrophication of terrestrial ecosystems, Water, Air and Soil Pollution, 2002, 141: 349–382.

    Article  CAS  Google Scholar 

  12. Bobbink, R., Hornung, M., Roelofs, J. G. M., The effects of airborne nitrogen pollutants on species diversity in natural and seminatural European vegetation, Journal of Ecology, 1998, 86: 717–738.

    Article  CAS  Google Scholar 

  13. Revenga, C., Murray, S., Abramovitz, J. et al., Watersheds of the World: Ecology and Vulnerability, Washington DC: World Resources Institute, 1998.

    Google Scholar 

  14. Watkinson, A. R., Ormerod, S. J., Grasslands, grazing and biodiversity: Editors’ introduction, Journal of Applied Ecology, 2001, 38: 233–237.

    Article  Google Scholar 

  15. Thomas, J. A., Telfer, M. G., Roy, D. B. et al., Comparative losses of British butterflies, birds and plants and the global extinction crisis, Science, 2004, 303: 1879–1881.

    Article  CAS  PubMed  Google Scholar 

  16. Ratcliffe, D. A., A Nature Conservation Review, Cambridge: Cambridge University Press, 1977.

    Google Scholar 

  17. Woodin, S. J., Farmer, A. M., Impacts of sulphur and nitrogen deposition on sites and species of nature conservation importance in Great Britain, Biological Conservation, 1993, 63: 23–30.

    Article  Google Scholar 

  18. Jenkinson, D. S., Potts, J. M., Perry, J. N. et al., Trends in herbage yields over the last century on the Rothamsted long-term continuous hay experiment, Journal of Agricultural Science, 1994, 122: 365–374.

    Article  Google Scholar 

  19. Johnson, A. E., Goulding, K. W. T., Poulton, P. R., Soil acidification during more than 100 years under permanent grassland and woodland at Rothamsted, Soil Use and Management, 1986, 2: 3–10.

    Article  Google Scholar 

  20. Mountford, J. O., Lakhani, K. H., Kirkham, F. W., Experimental assessment of the effects of nitrogen addition under hay-cutting and aftermath grazing on the vegetation of meadows on a Somerset peat moor, Journal of Applied Ecology, 1993, 30: 321–332.

    Article  Google Scholar 

  21. Kirkham, F. W., Kent, M., Soil seed bank composition in relation to the above-ground vegetation in fertilized and unfertilized hay meadows on a Somerset peat moor, Journal of Applied Ecology, 1997, 34: 889–902.

    Article  Google Scholar 

  22. Kirkham, F. W., Wilkins, R. J., The productivity and response to inorganic fertilizers of species rich wetland hay meadows on the Somerset moors: Nitrogen response under hay cutting and aftermath grazing, Grass and Forage Science, 1994, 49: 152–162.

    Article  CAS  Google Scholar 

  23. Kirkham, F. W., Mountford, J. O., Wilkins, R. J., The effects of nitrogen, potassium and phosphorus addition on the vegetation of a Somerset peat moor under cutting management, Journal of Applied Ecology, 1996, 33: 1013–1029.

    Article  Google Scholar 

  24. Morecroft, M. D., Sellers, E. K., Lee, J. A., An experimental investigation into the effects of atmospheric deposition on two semi-natural grasslands, Journal of Ecology, 1994, 82: 475–483.

    Article  CAS  Google Scholar 

  25. Carroll, J. A., Caporn, S. J. M., Johnson, D. et al., The interactions between plant growth, vegetation structure and soil processes in semi-natural acidic and calcareous grasslands receiving long-term inputs of simulated pollutant nitrogen deposition, Environmental Pollution, 2003, 121: 363–376.

    Article  CAS  PubMed  Google Scholar 

  26. Tilman, D., Wedin, D., Knops, J., Productivity and sustainability influenced by biodiversity in grassland ecosystems, Nature, 1996, 379: 718–720.

    Article  CAS  Google Scholar 

  27. Wedin, D. A., Tilman, D., Influence of nitrogen loading and species composition on the carbon balance of grasslands, Science, 1996, 274: 1720–1723.

    Article  CAS  PubMed  Google Scholar 

  28. Stevens, C. J., Dise, N. B., Mountford, J. O. et al., Impact of nitrogen deposition on the species richness of grasslands, Science, 2004, 303: 1876–1879.

    Article  CAS  PubMed  Google Scholar 

  29. Aerts, R., Berendse, F., de Caluwe, H. et al., Competition in heathland along an experimental gradient of nutrient availability, Oikos, 1990, 57: 310–318.

    Article  Google Scholar 

  30. Nilsson, J., Grennfelt, P., Critical Loads for Sulphur and Nitrogen, NORD 1988:15, Copenhagen: Nordic Council of Ministers, 1988.

    Google Scholar 

  31. Achermann, B., Bobbink, R., Empirical critical loads for nitrogen, Environmental documentation no 164, Berne: Swiss Agency for the Environment, Forests and Landscape, 2003.

    Google Scholar 

  32. Heil, G. W., Diemont, W. H., Raised nutrient levels change heathland into grassland, Vegetatio, 1983, 53: 113–120.

    Article  Google Scholar 

  33. DEFRA (Department of Environment, Food and Rural Affairs), A Biodiversity Strategy for England. Measuring Progress: Baseline Assessment, London: Department for Environment, Food and Rural Affairs, 2003.

    Google Scholar 

  34. Ellenberg, H., Weber, H. E., Dull, R. et al., Zeigerwerte von Pflanzen in Mitteleuropa, Scripta Geobotanica, 1991, 18: 1–248.

    Google Scholar 

  35. Hill, M. O., Roy, D. B., Mountford, J. O. et al., Extending Ellenberg’s indicator values to a new area: an algorithmic approach, Journal of Applied Ecology, 2000, 37: 3–15.

    Article  Google Scholar 

  36. Smart, S. M., Robertson, J. C., Shiels, E. J.. et al., Locating eutrophication effects across British vegetation between 1990 and 1998, Global Change Biology, 2003, 9: 1763–1774.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nancy B. Dise.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dise, N.B., Stevens, J. Nitrogen deposition and reduction of terrestrial biodiversity: Evidence from temperate grasslands. Sci. China Ser. C.-Life Sci. 48 (Suppl 2), 720–728 (2005). https://doi.org/10.1007/BF03187112

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03187112

Keywords

Navigation