Skip to main content
Log in

Aerobic anoxygenic phototrophic bacteria and their roles in marine ecosystems

  • Reviews
  • Published:
Chinese Science Bulletin

Abstract

Aerobic anoxygenic phototrophic bacteria (AAPB) are characterized by the following physiological and ecological features. A mother AAPB cell can unusually divide into 3 daughter cells and looks like a “Y” during the division. AAPB cells sometimes adhere together forming a free-floating population. Most of the known AAPB species are obligately aerobic. Bacteriochlorophyll a (BChl a) is the only photosynthetic pigment in AAPB, and the number of BChl a molecules in an AAPB cell is much less than that in an anaerobic phototrophic bacterial cell, while the accessorial pigments carotenoids in AAPB are abundant in concentration and diverse in species. In addition to the common magnesium containing BChl a, a zinc-containing BChla was also seen in AAPB. AAPB have light harvesting complex I but usually lack light harvesting complex II. Although AAPB featur in photosynthesis, their growth is not necessarily lightdependent. There is a mechanism controlling the photosynthesis approach. AAPB are widely distributed in marine environments especially in oligotrophic oceans accounting for a substantial portion of the total biomass and playing a unique role in the cycle of carbon and other biogenic elements. Besides the contribution to primary production, AAPB also have great potentials in bioremediation of polluted environments. Studies on AAPB would be of great value in understanding the evolution of photosynthesis and the structure and function of marine ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shiba, T., Simidu, U., Taga, N., Distribution of aerobic bacteria which contain bacteriochlorophyll a, Appl. Environ. Microbiol., 1979, 38: 43–45.

    Google Scholar 

  2. Harashima, K., Takamiya, K., Photosynthesis and photosynthetic apparatus, in Aerobic Photosynthetic Bacteria (eds. Harashima, K., Shiba, T., Murata, N.), Berlin: Springer-Verlag, 1989, 39–72.

    Google Scholar 

  3. Yurkov, V. V., Beaty, J. T., Aerobic anoxygenic phototrophic bacteria, Microbiol. Mol. Biol. Rev., 1998, 62: 695–724.

    Google Scholar 

  4. Wakao, N., Yokoi, N., Isoyama, N. et al., Discovery of natural photosynthesis using Zn-containing bacteriochlorophyll in an aerobic bacteriumAcidiphilium rubrum, Plant Cell Physiol., 1996, 37: 889–896.

    Google Scholar 

  5. Kolber, Z. S., Gerald, F. P., Andrew, S. L. et al., Contribution of aerobic photoheterotrophic bacteria to the carbon cycle in the ocean, Science, 2001, 292: 2492–2495.

    Article  Google Scholar 

  6. Karl, D. M., Hidden in a sea of microbes, Nature, 2002, 415: 590–591.

    Article  Google Scholar 

  7. Shioi, Y., Doi, M., Arata, H. et al., A denitrifying activity in an aerobic photosynthetic bacterium,Erythrobacter sp. strain OCh114, Plant Cell Physiol., 1988, 29: 861–865.

    Google Scholar 

  8. Yurkov, V. V., Schoepp, B., Vermeglio, A., Electron transfer carriers in obligately aerobic photosynthetic bacteria from generaRoseococcus andErythromicrobium, in Photosynthesis: From Light to Biosphere (ed. Matthis, P.), Dordrecht: Kluwer Academic Publishers, 1995, 543–546.

    Google Scholar 

  9. Bauer, C. E., Buggy, J., Mosley, C., Control of photosystem genes inRhodobacter capsulatus, Trends Genet Rev, 1993, 9: 56–60.

    Article  Google Scholar 

  10. Yurkov, V. V., Gemerden, H., Impact of light/dark regime on growth rate, biomass formation and bacteriochlorophyll synthesis inErythromicrobium hydrolyticum, Arch. Microbiol., 1993, 159: 84–89.

    Article  Google Scholar 

  11. Yurkov, V. V., Beatty, J. T., Isolation of aerobic anoxygenic photothetic bacteria from black smoker plume waters of the Juan de Fuca Ridge in the Pacific Ocean, Appl. Environ. Microbiol., 1998, 64(1): 337–341.

    Google Scholar 

  12. Shimada, K., Aerobic anoxygenic phototrophs, in Anoxygenic Photosynthetic Bacteria (eds. Blankenship, R. E., Madigan, M. T., Bauer, C. E.), Dordrecht: Kluwer Academic Publishers, 1995, 105–122.

    Google Scholar 

  13. Yurkov, V. V., Stackebrandt, E., Buss, O. et al., Reorganization of the genusErythromicrobium: description of “Erythromicrobiumsibiricum” as Sandaracinobacter sibiricus, gen nov, sp nov, and “Erythromicrobiumursincola” asErythromonas ursincola, gen nov, sp nov, Int. J. Syst. Bacteriol., 1997, 47: 1172–1178.

    Article  Google Scholar 

  14. Beja, O., Marcelino, T. S., John, F. H. et al., Unsuspected diversity among marine aerobic anoxygenic phototrophs, Nature, 2002, 415: 630–635.

    Article  Google Scholar 

  15. Woese, C. R., Bacterial evolution, Microbiol. Rev., 1987, 51: 221–271.

    Google Scholar 

  16. Shiba, T.,Roseobacter litoralis gen nov, sp nov andRoseobacter denitrificans sp nov, aerobic pink-pigmented bacteria which contain bacteriochlorophyll a, Syst. Appl. Microbiol., 1991, 14: 140–145.

    Google Scholar 

  17. Yurkov, V. V., Gorlenko, V. M., New species of aerobic bacteria from the genusErythromicrobium containing bacteriochlorophyll a, Microbiology, 1993, 61: 163–168.

    Google Scholar 

  18. Nagashima, K. V. P., Hiraishi, A., Shimada, K. et al., Horizontal transfer of genes coding for the photosynthetic reaction centers of purple bacteria, J. Mol. Evol., 1997, 45: 131–136.

    Article  Google Scholar 

  19. Yurkov, V. V., Krieger, S., Stackebrandt, E., Beatty, J. T.,Citromicrobium bathymonarium, a novel aerobic bacterium isolated from deep sea hydrothermal vent plume waters that contains photosynthetic pigment-protein complexes, J. Bacteriol., 1999, 181: 4517–4525.

    Google Scholar 

  20. Goericke, R., Bacteriochlorophyll a in the coean: is anoxygenic bacterial photosynthesis important? Limnol Oceanogr, 2002, 47: 290–295.

    Article  Google Scholar 

  21. Jiao, N., Wang, R., The structure of marine primary productivity, Limn. Ocean Sinica, 1993, 24(4): 342–346.

    Google Scholar 

  22. Langenhoff, A. A. M., Bronwers-Ceiler, D. L., Engelberting, J. H. L. et al., Microbial reduction of manganese coupled to toluene oxidation, FEMS Microbiol. Ecol., 1997, 22: 119–127.

    Article  Google Scholar 

  23. Laverman, A. M., Blum, J. S., Schaefer, J. K. et al., Growth of strain SES-3 with arsenate and other diverse electron acceptors, Appl. Environ. Microbiol., 1995, 61: 3556–3561.

    Google Scholar 

  24. Waterbury, J. B., Watson, S. W., Guillard, R. R. L., Brand, L. E., Wider spread occurrence of a unicellular marine planktonic cyanobacterium, Nature, 1979, 277: 293–294.

    Article  Google Scholar 

  25. Chisholm, S. W., Olson, R. J., Zettler, E. R. et al., A novel free-living prochlorophyte abundant in the oceanic euphotic zone, Nature, 1988, 334: 340–343.

    Article  Google Scholar 

  26. Chisholm, S. W., Frankel, S. F., Goericke, R. et al.,Prochlorococcus marinus nov. gen. nov. sp.: an oxyphototrophic marine prokaryote containing divinyl chlorophyll a and b, Arch Microbiol., 1992, 157: 297–300.

    Article  Google Scholar 

  27. Delong, E. F., Wu, K. Y., Prézlin, B. B. et al., High abundance of Archaea in Antarctic marine picoplankton, Nature, 1994, 371: 695–697.

    Article  Google Scholar 

  28. Fuhrman, J. A. et al., Widespread Archaea and novel bacteria from the deep sea as shown by 16s rRNA gene sequences, Mar. Ecol. Prog. Ser., 1997, 150(1–3): 275–285.

    Article  Google Scholar 

  29. Bergh, O., Borsheim, K. Y., Bratbak, G. et al., High abundance of viruses found in aquatic environments, Nature, 1989, 340: 467–468.

    Article  Google Scholar 

  30. Fuhrman, J. A., Marine virus and their biogeochemical and ecological effects, Nature, 1999, 399: 541–548.

    Article  Google Scholar 

  31. Kolber, Z. S., Van Dover, C. L., Niederman, R. A. et al., Bacterial photosynthesis in surface waters of the open ocean, Nature, 2000, 407: 178–179.

    Google Scholar 

  32. Béjà, O., Aravind, L., Koonin, E. V. et al., Bacterial rhodopsin: Evidence for a new type of phototrophy in the sea, Science, 2000, 289: 1902–1906.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nianzhi Jiao.

About this article

Cite this article

Jiao, N., Sieracki, M.E., Zhang, Y. et al. Aerobic anoxygenic phototrophic bacteria and their roles in marine ecosystems. Chin.Sci.Bull. 48, 1064–1068 (2003). https://doi.org/10.1007/BF03185754

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03185754

Keywords

Navigation