Skip to main content
Log in

Ability of intestinal lactic bacteria to bind or/and metabolise phenol and p-cresol

  • Ecological and Environmental Microbiology
  • Original Articles
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Intestinal microflora can contribute to colon cancer by the production of substances playing a role in carcinogenesis. Metabolites of protein fermentation in the colon, such as ammonia, H2S, indole, phenol, skatole are toxic. Lactic bacteria existing in the colon may exert an anti-carcinogenic action, but the mechanism is poorly understood. In the present study the ability of intestin|al lactobacilli to bind or metabolise phenol and p-cresolin vitro was determined.Lactobacillus strains were cultivated in MRS and in a modified MRS broth with reduced concentrations of carbon source. Phenol and p-cresol content in the media were from 2 to 10 μg/ml. In MRS medium lactobacilli could decrease the concentration of phenol and p-cresol and it was 0.2-5.8 μg/ml for phenol and 0.2-1.4 μg/ml for p-cresol. After cultivation in a modified MRS broth, the decrease was 0.5-2.0 μg/ml for phenol and 0.5-2.4 μg/ml for p-cresol. The binding capacity of bacterial cells was rather low. After incubation of non-growing bacteria the decrease of phenol concentration was 0.1-0.5 μg/ml and p-cresol 0.1-2.8 μg/ml. But the ability of growing lactobacilli to metabolise the compounds cannot be excluded. After interaction of lactobacilli with 10 μg/ml of phenol they displayed a lower genotoxicity, as evaluated by the alkaline comet assay. The phenomenon not always depended on the decrease of phenol concentration, but on the medium, the strain of bacteria and for phenol it ranged from 32 to 48%.Lactobacillus strains tested did not lower the genotoxicity of p-cresol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bolognani F., Rumney C.J., Rowland I.R. (1997). Influence of carcinogen binding by lactic acid producing bacteria on tissue distribution andin vivo mutagenicity of dietary carcinogens. Food Chem. Toxicol., 35: 535–545.

    Article  CAS  PubMed  Google Scholar 

  • Bone E., Tamm A., Hill M. (1976). The production of urinary phenols by gut bacteria and their role in the causation of large bowel cancer. Am. J. Clin. Nutr., 29: 1448–1454.

    CAS  PubMed  Google Scholar 

  • Burns A.J., Rowland I.R. (2000). Anti — carcinogenicity of probiotics and prebiotics. Curr. Issues Intest. Microbiol., 1: 13–24.

    CAS  PubMed  Google Scholar 

  • Chung K.T., Fulk G.E., Stein M.W. (1975). Tryptophanase of fecal flora as a possible factor in the etiology of colon cancer. J. Natl. Cancer Inst., 554: 1073–1078.

    Google Scholar 

  • Commane D., Hughes R., Shortt C., Rowland I. (2005). The potential mechanisms involved in anti-carcinogenic action of probiotics. Mut. Res., 591: 276–289.

    CAS  Google Scholar 

  • Goldin B.R. (1986). The metabolism of the intestinal microflora and its relationship to dietary fat, colon and breast cancer. Prog. Clin. Biol. Res., 222: 655–685.

    CAS  PubMed  Google Scholar 

  • Guarner F., Malagelada J.R. (2003). Gut flora in health and disease. Lancet, 361: 512–519.

    Article  PubMed  Google Scholar 

  • Hughes R., Magee E.A.M., Bingham S. (2000). Protein degradation in the large intestine: relevance to colorectal cancer. Curr. Issues. Intest. Microbiol., 1: 51–58.

    CAS  PubMed  Google Scholar 

  • Husni-Hag-Ali R., Gomez-Rodriguez B.J., Mendoza Olivares F.J., Garcia Montes J.M., Sachez-Gey Venegas S., Herrerias Gutierrez J.M. (2003). Measuring colonic transit time in chronic idiopathic constipation. Rev. Esp. Enferm. Dig., 95: 186–190.

    CAS  PubMed  Google Scholar 

  • Jansen G.J., Wildboer-Veloo A.C.M., Tonk R.H.J., Franks A.H., Welling G.W. (1999). Development and validation of an automated, microscopy-based method for enumeration of groups of intestinal bacteria. J. Microbiol. Met., 37: 215–221.

    Article  CAS  Google Scholar 

  • Kikugawa K., Kato T. (1986). Formation of a mutagenic diazoquinone by interaction of phenol with nitrite. Food Chem. Toxicol., 26: 209–214.

    Google Scholar 

  • Macfarlane G.T., Cummings J.H., Allison C. (1986). Protein degradation by human intestinal bacteria. J. Gen. Microbiol., 132: 1647–1656.

    CAS  PubMed  Google Scholar 

  • Nowak A., Libudzisz Z. (2006). Influence of phenol, p-cresol and indole on growth and survival of intestinal lactic acid bacteria. Anaerobe, 12: 80–84.

    Article  CAS  PubMed  Google Scholar 

  • Priebe M.G., Vonk R.J., Sun X., He T., Harmsen H.J., Welling G.W. (2002). The physiology of colonic metabolism. Possibilities for interventions with pre- and probiotics. Eur. J. Nutr., 1: 2–10.

    Google Scholar 

  • Prokesch R.W., Breitenseher M.J., Kettenbach J., Herbst F., Maier A., Lechner G., Mahieu P. (1999). Assessment of chronic constipation: colon transit time versus defecography. Eur. J. Radiol., 32: 197–203.

    Article  CAS  PubMed  Google Scholar 

  • Rafter J. (2003). Probiotics and colon cancer. Best Pract. & Res. Clin. Gastroenter., 17: 849–859.

    Article  Google Scholar 

  • Roberfroid M.B., Bornet, F., Bouley C., Cummings J.H. (1995). Colonic microflora: Nutrition and Health. Nutr. Rev., 53: 127–130.

    Article  CAS  PubMed  Google Scholar 

  • Rowland I.R., Mallett A.K., Wise A. (1985). The effect of diet on the mammalian gut flora and its metabolic activities. CRC Crit. Rev. Toxicol., 16: 31–103.

    Article  CAS  Google Scholar 

  • Saikali J., Picard C., Freitas M., Holt P.R. (2004). Fermented milks, probiotic cultures and colon cancer. Nutrition and Cancer, 49: 14–24.

    Article  PubMed  Google Scholar 

  • Seltzer R. (1986). Phenols help form nitrosamines from NO(2). Chem. Engin. News, 64: 30.

    Google Scholar 

  • Singh N.P., McCoy M.T., Tice R.R., Schneider E.L. (1988). A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res., 175: 184–191.

    Article  CAS  PubMed  Google Scholar 

  • Shephard S.E., Schlatter C., Lutz W.K. (1987). Model risk analysis of nitrosable compounds in the diet as precursors of potential endogenous carcinogens. In Bartsch H., O’Neill I.K., Schultz-Hermann Eds, The relevance of N-nitroso compounds to human cancer: exposures and mechanisms. IARC Scientific Publication, Lyon, no. 84.

    Google Scholar 

  • Smith E.A., Macfarlane G.T. (1996). Enumeration of human colonic bacteria producing phenolic and indolic compounds: effects of pH, carbohydrate availability and retention time on dissimilatory aromatic amino acid metabolism. J. Appl. Bacteriol., 81: 288–302.

    CAS  PubMed  Google Scholar 

  • Spanggaard B., Huber I., Nielsen T., Appel K.F., Gram L. (2000). The microflora of rainbow trout intestine: a comparison of traditional and molecular identification. Aquaculture, 182: 1–15.

    Article  CAS  Google Scholar 

  • Wyman J.B., Heaton K.W., Manning A.P. (1978). Wicks A.C. Variability of colonic function in healthysubjects. Gut, 19: 146–150.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana Nowak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nowak, A., Libudzisz, Z. Ability of intestinal lactic bacteria to bind or/and metabolise phenol and p-cresol. Ann. Microbiol. 57, 329–335 (2007). https://doi.org/10.1007/BF03175068

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03175068

Key words

Navigation