Skip to main content
Log in

A Lagrange multiplier/fictitious domain method for the Dirichlet problem — Generalization to some flow problems

  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this article we discuss the solution of the Dirichlet problem for a class of elliptic operators by a Lagrange multiplier/fictitious domain method. This approach allows the use of regular grids and therefore of fast specialized solvers for problems on complicated geometries; the resulting saddle-point system can be solved by an Uzawa/conjugate gradient algorithm. The resulting methodology is applied to the solution of some flow problems, including external incompressible viscous flow modelled by Navier-Stokes equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Bethuel, H. Brezis, F. Hélein, Limite singulière pour la minimisation de fonctionnelles du type Ginzburg-Landau. C.R. Acad. Sci. Paris,314 (1992), 891–895.

    MATH  Google Scholar 

  2. F. Bethuel, H. Brezis, F. Hélein, Asymptotics for the minimization of a Ginzburg-Landau functional. Calc. Var.,1 (1993), 123–148.

    Article  MATH  Google Scholar 

  3. C. Borgers, Domain imbedding methods for the Stokes equations. Numer. Math.,57 (1990), 435–451.

    Article  MathSciNet  Google Scholar 

  4. M.O. Bristeau, R. Glowinski, B. Mantel, J. Periaux and P. Perrier, Numerical methods for incompressible and compressible Navier-Stokes problems. Finite Elements in Fluids, Vol. 6, (eds. R.H. Gallagher, G. Garey, J.T. Oden, and O.C. Zienkiewicz), Wiley, Chichester, 1985, 1–40.

    Google Scholar 

  5. M.O. Bristeau, R. Glowinski and J. Periaux, Numerical methods for the Navier-Stokes equations. Comp. Phys. Rep.,6 (1987), 73–187.

    Article  Google Scholar 

  6. J.E. Bussoletti, F.T. Johnson, S.S. Samanth, D.P. Young, R.H. Burkhart, EM-TRANAIR: Steps toward solution of general 3D Maxwell’s equations. Computer Methods in Applied Sciences and Engineering (ed. R. Glowinski), Nova Science, Commack, NY, 1991, 49–72.

    Google Scholar 

  7. B.L. Buzbee, F.W. Dorr, J.A. George, G.H. Golub, The direct solution of the discrete Poisson equation on irregular regions. SIAM J. Numer. Anal.,8 (1971), 722–736.

    Article  MATH  MathSciNet  Google Scholar 

  8. Q.V. Dinh, R. Glowinski, J. He, V. Kwock, T.W. Pan, J. Periaux, Lagrange multiplier approach to fictitious domain methods: Application to fluid dynamics and electro-magnetics. Domain Decomposition Methods for Partial Differential Equations (eds. D.E. Keyes, T.F. Chan, G. Meurant, J.S. Scroggs, and R.G. Voigt), SIAM, Philadelphia, PA, 1992, 151–194.

    Google Scholar 

  9. R. Glowinski, T.W. Pan, J. Periaux, A fictitious domain method for Dirichlet problem and applications. Comput. Methods Appl. Mech. Engrg.,111 (1994), 283–303.

    Article  MATH  MathSciNet  Google Scholar 

  10. R. Glowinski, Numerical Methods for Nonlinear Variational Problems. Springer-Verlag, New York, 1984.

    MATH  Google Scholar 

  11. R. Glowinski, Viscous flow simulation by finite element methods and related numerical techniques. Progress and Supercomputing in Computational Fluid Dynamics (eds. E.M. Murman and S.S. Abarbanel), Birkhauser, Boston, 1985, 173–210.

    Google Scholar 

  12. R. Glowinski, Finite element methods for the numerical simulation of incompressible viscous flow. Introduction to the control of the Navier-Stokes equations. Lectures in Applied Mathematics,28, AMS, Providence, R. I., 1991, 219–301.

    Google Scholar 

  13. R. Glowinski, T.W. Pan, J. Periaux, A fictitious domain method for external incompressible viscous flow modeled by Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg.,112 (1994), 133–148.

    Article  MATH  MathSciNet  Google Scholar 

  14. R. Glowinski, T.W. Pan, J. Periaux, A one shot domain decomposition/fictitious domain method for the solution of elliptic equations (to appear).

  15. R. Glowinski, T.W. Pan, J. Periaux, M. Ravachol, A fictitious domain method for the incompressible Navier-Stokes equations. The Finite Element Method in the 90’s (eds. E. Oñate, J. Periaux, A. Samuelson), Springer-Verlag, Berlin, 1991, 440–417.

    Google Scholar 

  16. D. Peaceman, H. Rachford, The numerical solution of parabolic and elliptic differential equations. J. SIAM,3 (1955), 28–41.

    MATH  MathSciNet  Google Scholar 

  17. O. Pironneau, Finite Element Methods for Fluids. J. Wiley, Chichester, 1989.

    Google Scholar 

  18. D.P. Young, R.G. Melvin, M.B. Bieterman, F.T. Johnson, S.S. Samanth, J.E. Bussoletti, A locally refined finite rectangular grid finite element method. Application to computational physics. J. Comput. Phys.,92 (1991), 1–66.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Glowinski, R., Pan, TW. & Periaux, J. A Lagrange multiplier/fictitious domain method for the Dirichlet problem — Generalization to some flow problems. Japan J. Indust. Appl. Math. 12, 87–108 (1995). https://doi.org/10.1007/BF03167383

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03167383

Key words

Navigation