Skip to main content
Log in

123I-MIBG myocardial scintigraphy in diabetic patients: Relationship with201Tl uptake and cardiac autonomic function

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Purpose

To investigate the influence of diabetic myocardial damage (suspected myocardial damage; SMD) diagnosed by201T1-SPECT and diabetic cardiac autonomic neuropathy (AN) on myocardial MIBG uptake in patients with non-insulin-dependent diabetes mellitus (NIDDM).

Subjects and Methods

Eighty-seven diabetic patients divided into four subgroups: 23 with SMD (+) AN (+); 19 with SMD (+) AN (−); 27 with SMD (−) AN (+); 18 with SMD (−) AN (−), and 10 controls were studied. Both planar and SPECT images were taken at 30 minutes (early) and 3 hours (delayed) after123I-MIBG injection. The heart to mediastinum uptake ratio (H/M) and washout ratio of123I-MIBG (WR) were obtained from both planar images. On SPECT images, the total uptake score (TUS) was obtained by the 5 point score method by dividing the myocardium into 20 segments on visual analysis. Similarly, the difference between the201Tl image and the123I-MIBG image in TUS was taken as the difference in the total uptake score (ΔTUS) representing cardiac sympathetic denervation without SMD.

Results

On both early and delayed planar images, the mean H/M value in the subgroups of diabetic patients was significantly lower in the SMD (+) AN (+) group than in the control group, but among those subgroups, there was statistically significant difference between the SMD (+) AN (+) and SMD (−) AN (−) groups only on the delayed images. Regarding the WR value, there was no statistically significant difference among subjects. On SPECT image analysis, the diabetic sub-group with AN or SMD had statistically significant lower values for TUS than those of the control group. Among diabetics, there was a statistically significant differences between SMD [+] AN [+] and SMD [−] AN [−] on both early and delayed images. Similarly, the SMD [+] AN [−] group also had significantly lower values than those of SMD [−] AN [−] on early images. Regarding ΔTUS, there was a statistically significant differences between AN [+] subgroups and controls. Similarly, the mean value for ΔTUS was much higher in AN [+] subgroups than in AN [−] subgroups with or without SMD in diabetes mellitus.

Conclusion

123I-MIBG myocardial uptake is affected by both SMD and cardiac autonomie neuropathy. Based on the finding that ΔTUS was much higher in AN [+] subgroups and there was no statistically significant difference between SMD [+] AN [+] and SMD [−] AN [+] subgroups, a decrease in myocardial123I-MIBG uptake might progress independently of SMD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ewing DJ, Cambell IW, Clarke BF. The natural history of diabetic autonomic neuropathy.Q J Med 49: 95–108, 1980.

    PubMed  CAS  Google Scholar 

  2. Nagamachi S, Jinnouchi S, Nakahara H, Flores LG, Ohnishi T, Hoshi H, et al.123I-MIBG myocardial scintigraphy in diabetic patients: Relationship to autonomic neuropathy.Nucl Med Commu 17: 621–632, 1996.

    Article  CAS  Google Scholar 

  3. Mäntysaari M, Kuikka J, Mustonene J, Tahvanainen K, Vanninen E, Länsimies E, et al. Noninvasive detection of cardiac sympathetic nervous dysfunction in diabetic patients using [123I]metaiodobenzylguanidine.Diabetes 41: 1069–1075, 1992.

    Article  PubMed  Google Scholar 

  4. Kim SJ, Lee JD, Ryu YH, Jeon P, Shim YW, Yoo HS, et al. Evaluation of cardiac sympathetic neuronal integrity in diabetic patients using iodine-123 metaiodobenzyl guanidine.Eur J Nucl Med 23: 401–406, 1996.

    Article  PubMed  CAS  Google Scholar 

  5. Katono E, Owada K, Takeda H, Techigawara M, Watanabe N, Maruyama Y. Usefulness of myocardial imaging by123I-MIBG in assessment of diabetic neuropathy.Jpn J Nucl Med 30: 1235–1239, 1993.

    CAS  Google Scholar 

  6. Hattori N, Tamaki N, Hayashi T, Masuda I, Kudoh T, Tateno M, et al. Regional abnormality of iodine-123-MIBG in diabetic hearts.J Nucl Med 37: 1985–1990, 1996.

    PubMed  CAS  Google Scholar 

  7. Dubois EA, Kam KL, Somsen GA, Boer GJ, Bruin K, Batink HD, et al. Cardiac iodine-123 metaiodobenzyl-guanidine uptake in animals with diabetes mellitus and/or hypertension.Eur J Nucl Med 23: 901–908, 1996.

    Article  PubMed  CAS  Google Scholar 

  8. Abe N, Kashiwagi A, Shigeta Y. Usefulness of cardiac125I-metaiodobenzylguanidine uptake for evaluation of cardiac sympathetic nerve abnormalities in diabetic rats.J Japan Diab Soc 35: 113–119, 1992.

    CAS  Google Scholar 

  9. Matsuo S, Takahashi S, Yoshida S, Tohru I, Nakamura Y, Mitsunami K, et al. Characteristics of regional sympathetic innervation in diabetic patients with silent myocardial ischemia assessed by123I-metaiodobenzyl guanidine imaging.Jpn J Nucl Med 33: 493–499, 1996.

    CAS  Google Scholar 

  10. Langer A, Freeman MR, Josse RG, Armstrong PW. Metaiodobenzylguanidine imaging in diabetes mellitus: Assessment of cardiac sympathetic denervation and its relation to autonomic dysfunction and silent myocardial ischemia.J Am Coll Cardiol 25: 610–618, 1995.

    Article  PubMed  CAS  Google Scholar 

  11. Matsuo S, Takahashi M, Nakamura Y, Kinoshita M. Evaluation of cardiac sympathetic innervation with iodine-123-metaiodobenzylguanidine imaging in silent myocardial ischemia.J Nucl Med 37: 712–717, 1996.

    PubMed  CAS  Google Scholar 

  12. Hamby RI, Zoneraich S, Sherman L. Diabetic cardiomyopathy.JAMA 229: 1749–1754, 1974.

    Article  PubMed  CAS  Google Scholar 

  13. Rubier S, Dlugash J, Yuceoglu YZ, Kumal T, Branwood AM, Grishman A. New type of cardiomyopathy associated with diabetic glomerulosclerosis.Am J Cardiol 30: 595–602, 1972.

    Article  Google Scholar 

  14. Mizuno S, Genda A, Nakayama A, Igarashi Y, Takeda R. Myocardial involvement in diabetic patients evaluated by exercise thallium-201 scintigraphy and cardiac catheterization.J Cardiogr 15: 427–437, 1985.

    PubMed  CAS  Google Scholar 

  15. Amano K, Sakamoto T, Oku J, Fujinami K, Sugimoto T. Diabetic cardiomyopathy in mild diabetics: evaluation by thallium-201 scintigraphy and exercise radionuclide ventriculography.J Cardiogr 16: 907–917, 1986.

    PubMed  CAS  Google Scholar 

  16. Langer A, Freeman MR, Josse RG, Steiner G, Armstrong PW. Detection of silent myocardial ischemia in diabetes mellitus.Am J Cardiol 67: 1073–1078, 1991.

    Article  PubMed  CAS  Google Scholar 

  17. Bruce RA. Exercise testing of patients with coronary heart disease: principles and normal standards for evaluation.Ann Clin Res 3: 323–332, 1971.

    PubMed  CAS  Google Scholar 

  18. Koistinen MJ. Prevalence of asymptomatic myocardial ischaemia in diabetic subjects.BMJ 301: 92–95, 1990.

    Article  PubMed  CAS  Google Scholar 

  19. Ueda N. Detection of diabetic autonomic neuropathy—Utilization of power spectral analysis of heart rate variability.J Japan Diab Soc 35: 17–23, 1992.

    Google Scholar 

  20. Hashimoto J, Hata M, Kondou M, Hirota A, Shima K. Normal reference values and prediction equation of autonomic nerve functions based on variations in the R-R interval in electrocardiographs.J Japan Diab Soc 30: 167–173, 1987.

    Google Scholar 

  21. Mori Y, Anzai K, Tashiro E, Takata T, Ohkubo K, Futata T, et al. Squatting test for the evaluation of diabetic cardiovascular autonomic neuropathy.J Japan Diab Soc 39: 857–865, 1996.

    Google Scholar 

  22. Maeno M, Ishida Y, Shimonagata T, Hayashida K, Toyama T, Hirose Y, et al. The significance of201T1/123I-MIBG (Metaiodobenzylguanidine) mismatched myocardial regions for predicting ventricular tachycardia in patients with idiopathic dilated cardiomyopathy.Jpn J Nucl Med 30: 1221–1229, 1993.

    CAS  Google Scholar 

  23. Wieland DM, Brown LE, Rogers WL, Worthington KC, Wu JL, Clinthrone NH, et al. Myocardial imaging with a radioiodinated norepinephrine storage analog.J Nucl Med 22:21–31, 1981.

    Google Scholar 

  24. Sisson JC, Wieland DM, Sherman P, Mangner TJ, Tobes MC, Jackes Jr S. Metaiodobenzylguanidine as an index of the adrenergic nervous system integrity and function.J Nucl Med 28: 1620–1624, 1987.

    PubMed  CAS  Google Scholar 

  25. Stanton MS, Tuli MM, Radtke NL, Heger JJ, Miles WM, Mock et al. Regional sympathetic denervation after myocardial infarction in humans detected noninvasively using I-123 metaiodobenzylguanidine.J Am Coll Cardiol 14: 1519–1526, 1989.

    Article  PubMed  CAS  Google Scholar 

  26. McGhie AL, Corbett JR, Akers MS, Kurkarni P, Sills MN, Kremers M, et al. Regional cardiac adrenergic function using I-123 metaiodobenzylguanidine tomographic imaging after acute myocardial infarction.Am J Cardiol 67: 236–242, 1991.

    Article  PubMed  CAS  Google Scholar 

  27. Ishida Y, Maeno M, Hirose Y, Takahashi N, Katabuchi T, Oka H, et al. Characteristic of regional sympathetic dys-function in acute ischemic myocardium assessed by123I-Metaiodobenzylguanidine imaging: Impairment of myocardial norepinephrine uptake of retention.Jpn J Nucl Med 32:631–642, 1995.

    CAS  Google Scholar 

  28. Kahn JK, Sisson JC, Vinik AI. QT interval prolongation and sudden cardiac death in diabetic autonomic neuropathy.J Clin Endocrinol Metab 64: 751–754, 1987.

    Article  PubMed  CAS  Google Scholar 

  29. Brismar T, Sima AA, Greene DA. Reversible and irreversible nodal dysfunction in diabetic neuropathy.Ann Neurol 21:504–507, 1987.

    Article  PubMed  CAS  Google Scholar 

  30. Ganguly PK, Beamish RE, Dhalla KS, Iinnes IR, Dhalla NS. Norepinephrine storage, distribution and release in diabetic cardiomyopathy.Am J Physiol 252: E734-E739, 1987.

    PubMed  CAS  Google Scholar 

  31. Tsuchimochi S, Tamaki N, Tadamura E, Kawamoto M, Fujita T, Yonekura Y, et al. Age and gender differences in normal myocardial adrenergic neuronal function evaluated by Iodine-123-MIBG imaging.J Nucl Med 36: 969–974, 1995.

    PubMed  CAS  Google Scholar 

  32. Bogaty P, Guimond J, Robitaille NM, Rousseau L, Simard S, Rouleau JR, et al. A reappraisal of exercise electrocardiographic indexes of the severity of ischemic heart disease: angiographie and scintigraphic correlates.J Am Coll Cardiol 29: 1497–1504, 1997.

    Article  PubMed  CAS  Google Scholar 

  33. Maddahi J, Rodrigues E, Kiat H, et al. Detection and evaluation of coronary artery disease by thallium-201 myocardial perfusion scintigraphy. InCardiac SPECT Imaging, Depuey EG, Berman DS, Garcia EV, eds., New York, Raven Press, pp. 103–120, 1994.

    Google Scholar 

  34. Holtz J, Mayer E, Bassenger E. Demonstration of a-adrenergic coronary control in different layers of canine myocardium by regional myocardial sympathetictomy.Pflugers Arch 187–194, 1977.

  35. Stevens MJ, Dayanikli F, Raffel DM, Allman KC, Sandforf T, Feldman EL, et al. Scintigraphic assessment of regionalized defects in myocardial sympathetic innervation and blood flow regulation in diabetic patients with autonomic neuropathy.J Am Coll Cardiol 31: 1575–1584, 1998.

    Article  PubMed  CAS  Google Scholar 

  36. Nakajo M, Shimabukuro K, Yoshimura H, Yonekura R, Nakabeppu Y, Tanoue T, et al. Iodine-131 Metaiodobenzyl-guanidine. Intra- and Extra-vesicular accumulation in the rat heart.J Nucl Med 27: 84–89, 1986.

    PubMed  CAS  Google Scholar 

  37. Merlet P, Valette H, Rande JL, Moyse D, Duboc D, Dove P, et al. Prognostic value of cardiac metaiodobenzylguanidine imaging in patients with heart failure.J Nucl Med 33: 471–477, 1992.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagamachi, S., Jdmnouchi, S., Kurose, T. et al. 123I-MIBG myocardial scintigraphy in diabetic patients: Relationship with201Tl uptake and cardiac autonomic function. Ann Nucl Med 12, 323–331 (1998). https://doi.org/10.1007/BF03164921

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03164921

Key words

Navigation