Skip to main content
Log in

The role of matrix metalloproteinases in tumor angiogenesis and tumor metastasis

  • Review
  • Published:
Pathology Oncology Research

Abstract

Although a considerable amount of effort has been placed on discovering the etiologies of cancer, the majority of the basic cancer research existing today has focused on understanding the molecular mechanism of tumor formation and metastasis. Metastatic spread of tumors continues to be a major obstacle to successful treatment of malignant tumors. Approximately 30% of those patients diagnosed with a solid tumor have a clinically detectable metastasis and for the remaining 70%, metastases are continually being formed throughout the life of the tumor. Even after the tumor is excised, the threat of death is attributable to the metastasis that may occur through the remaining tumor cells. In addition, treating the metastasis often proves futile since metastasis often vary in size, composition, and anatomical location. New treatments blocking the formation of metastasis will provide greater chances of survival for cancer patients. One family of enzymes that has been shown over the years to play a role in tumor progression is the matrix metalloproteinase (MMP) family. The main function of MMPs, also known as matrixins, is degradation of the extracellular matrix physiologic function involving MMPs include wound healing, bone resorption and mammary involution. MMPs, however, also contribute to pathological conditions including rheumatoid arthritis, coronary artery disease, and cancer. Tumor cells are believed to utilize the matrix degrading capability of these enzymes to spread to distant sites. In addition, MMPs also are thought to promote the growth of these tumor cells once they have metastasized. This review will discuss the role of MMPs and their inhibitors in tumor invasion, angiogenesis and metastasis with special emphasis on the gelatinases, MMP-2 and MMP-9.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

NH2-terminal:

Amino-terminal

CA19-9:

Carbohydrate Antigen 19-9

CEA:

Carcinoembryonic Antigen

CSF:

Cerebrospinal Fluid

EC:

Endothelial Cell

ECM:

Extracellular Matrix

HDMVEC:

Human Dermal Microvascular Endothelial Cell

HUVEC:

Human Umbilical Vein Endothelial Cell

IL-1α:

Interleukin-1 Alpha

IL-1β:

Interleukin-1 Beta

IL-8:

Interleukin-8

IVVM:

Intravital Videomicroscopy

MMP:

Matrix Metalloproteinase

MMPI:

Matrix Metalloproteinase Inhibitor

MT-MMP:

Membrane-Type Met-alloproteinase

PMA:

Phorbol 12-Myristate 13-Acetate

PMNs:

Polymorphonuclear Cells

TSP-1:

Thrombospondin-1

TIMP:

Tissue Inhibitor of Metalloproteinase

TGF-β:

Transforming Growth Factor Beta

TNF:

Tumor Necrosis Factor

VEGF:

Vascular Endothelial Cell Growth Factor

References

  1. Sugarbaker EV. Patterns of metastasis in human malignancies. Cancer Biol Rev 2:235, 1981.

    Google Scholar 

  2. Weiss L Gilbert HA, Bone Metastasis: 1981, Boston: G.K. Hall.

    Google Scholar 

  3. Liotta LA Stetler-Stevenson WG, Principles of molecular cell biology of cancer: Cancer Metastasis., in Cancer, Principles & Practice of Oncology, VT DeVita, S Hellman, and S.A. Rosenberg, Editors. 1993, Lippincott Co.: Philadelphia. p. 134–149.

    Google Scholar 

  4. Delaisse J-M Vaes G: Mechanism of mineral solubilisation and matrix degradation in osteoclastic bone resorption, in Biology and Physiology of the Osteoclast. B.R. Rifkin and C.V. Gay, Editors. 1992, CRC Press: Raton, Florida, p. 290–314.

    Google Scholar 

  5. Talhouk RS, Bissell MJ Werb Z: Coordinated expression of ECM-degrading proteinases and their inhibitors regulates mammary epithelial function during involution. J Cell Biol 118:1271–1282, 1992.

    Article  PubMed  CAS  Google Scholar 

  6. Agren MS, Jorgensen LN, Andersen M, et al: Matrix metalloproteinase 9 level predicts optimal collagen deposition during early wound repair in humans. Brit J Surgery 85:68–71, 1998.

    Article  CAS  Google Scholar 

  7. Gruber BL, Sorbi D, French DL, et al: Markedly elevated serum MMP-9 (gelatinase B) levels in rheumatoid arthritis: a potentially useful laboratory marker. Clinical Immunol Immunopathol 78:161 171, 1996.

    Google Scholar 

  8. Parsons SL, Watson SA, Brown PD, et al: Matrix Metalloproteinases. Brit J Surgery 84:160–166, 1997.

    Article  CAS  Google Scholar 

  9. Tyagi SC: Proteinases and myocardial extracellular matrix turnover. Molecular and Cellular Biochemistry 168:1–12, 1997.

    Article  PubMed  CAS  Google Scholar 

  10. Gross J Lapiere CM: Collagenolytic activity in amphibian tissues: a tissue culture assay. Proc Natl Acad Sci USA 48:1014–1022, 1962.

    Article  PubMed  CAS  Google Scholar 

  11. Aimes RT Quigley JP: Matrix metalloproteinase-2 is an interstitial collagenase. Inhibitor-free enzyme catalyzes the cleavage of collagen fibrils and soluble native type I collagen generating the specific 3/4- and *-length fragments. J Biol Chem 270:5872–5876, 1995.

    Article  PubMed  CAS  Google Scholar 

  12. Matrisian L: Metalloproteinases and their inhibitors in matrix remodeling. Trends Genet 6:121–125, 1990.

    Article  PubMed  CAS  Google Scholar 

  13. Rooprai HK, McCormick D: Proteases and their inhibitors in human brain tumours: a review. Anticancer Res 17:4151–4162, 1997.

    PubMed  CAS  Google Scholar 

  14. Celentano DC, Frishman WH: Matrix metalloproteinases and coronary artery disease: a novel therapeutic target. J Clin Pharmacol 37:991–1000, 1997.

    PubMed  CAS  Google Scholar 

  15. Toth M, Gervasi DC, Fridman R: Phorbol ester-induced cell surface association of matrix metalloproteinase-9 in human MCF10A breast epithelial cells. Cancer Res 57:3159–3167, 1997.

    PubMed  CAS  Google Scholar 

  16. Miyake H, Yoshimura K, Hara I, et al: Basic fibroblast growth factor regulates matrix metalloproteinases production and in vitro invasiveness in human bladder cancer cell lines. J Urology 157:2351–2355, 1997.

    Article  CAS  Google Scholar 

  17. Kanno N, Nonomura N, Miki T, et al: Effects of epidermal growth factor on the invasion activity of the bladder cancer cell line. J Urology 159:586–590, 1998.

    Article  CAS  Google Scholar 

  18. Lamoreaux WJ, Fitzgerald MEC, Reiner A, et al: Vascular endothelial growth factor increases release of gelatinase A and decreases release of tissue inhibitor of metalloproteinases by microvascular endothelial cells in vitro. Microvascular Res 55:29–42, 1998.

    Article  CAS  Google Scholar 

  19. Song SY, Nomizu M, Yamada Y, et al: Liver metastasis formation by laminin-1 peptide (LQVQLSIR)-adhesion selected B16 — F10 melanoma cells. Int J Cancer 71:436–441, 1997.

    Article  PubMed  CAS  Google Scholar 

  20. Tyagi SC, Kumar GS, Glover G: Induction of tissue inhibitor and matrix metalloproteinase by serum in human heart-derived fibroblast and endomyocardial endothelial cells. J Cell Biochem 58:360–371, 1995.

    Article  PubMed  CAS  Google Scholar 

  21. Bafetti LM, Young TN, Itoh Y, et al: Intact vitronectin induces matrix metalloproteinase-2 and tissue inhibitor of metalloproteinases-2 expression and enhanced cellular invasion by melanoma cells. J Biol Chem 273:143–149, 1998.

    Article  PubMed  CAS  Google Scholar 

  22. Haas TL, Davis SJ, Madri JA: Three-dimensional type I collagen lattices induce coordinate expression of matrix metalloproteinases MT1-MMP and MMP-2 in microvascular endothelial cells. J Biol Chem 273:3604–3610, 1998.

    Article  PubMed  CAS  Google Scholar 

  23. Qian X, Tuszynski GP: Expression of thrombospondin-1 in cancer: a role in tumor progression. Proc Soc Exp Biol Med 212:199–207, 1996.

    PubMed  CAS  Google Scholar 

  24. Qian X, Wang TN, Rothman VI, et al: Thrombospondin-1 modulates angiogenesisin vitro by up-regulation of matrix metalloproteinase-9 in endothelial cells. ExpCell Res 235:403–412, 1997.

    Article  CAS  Google Scholar 

  25. Sorsa T, Salo T, Koivunen E, et al: Activation of type IV procollagenases by human tumor-associated trypsin-2. J Biol Chem 272:21067–21074, 1997.

    Article  PubMed  CAS  Google Scholar 

  26. Tyagi SC, Kumar S, Katwa L: Differential regulation of extracellular matrix metalloproteinase and tissue inhibitor by heparin and cholesterol in fibroblast cells. J Mol Cell Cardiology 29:391–404, 1997.

    Article  CAS  Google Scholar 

  27. Mazzieri R, Masiero L, Zanetta L, et al: Control of type IV collagenase activity by components of the urokinase-plasmin system: a regulatory mechanism with cell-bound reactants. EMBO J 16:2319–2332, 1997.

    Article  PubMed  CAS  Google Scholar 

  28. Okada Y, Morodomi T, Enghild JJ, et al: Matrix metalloproteinase 2 from human rheumatoid synovial fibroblast: purification and activation of the precursor and enzymatic properties. Eur J Biochem 194:721–730, 1990.

    Article  PubMed  CAS  Google Scholar 

  29. Sato H, Seiki M: Membrane-type matrix metalloproteinases (MT-MMPs) in tumor metastasis. J Biochem (Tokyo) 119:209–215, 1996.

    CAS  Google Scholar 

  30. Cawston TE, Inhibitors of metalloproteinases, inProteinase inhibitors, A.J. Barret and G. Salveson, Editors. 1986: Amersterdam. p. 589–610.

  31. Gomez DE, Alonso DF, Yoshiji H, et al: Tissue Inhibitors of metalloproteinases: structure, regulation and biological functions. Europ J Cell Biol 74:111–122, 1997.

    PubMed  CAS  Google Scholar 

  32. Kossakowska AE, Urbanski SJ, Edwards DR: Tissue inhibitor of metalloproteinases (TIMP-1) RNA is expresses at elevated levels in malignant non-Hodgkin’s lymphomas. Blood 77:12475–12481, 1991.

    Google Scholar 

  33. Brian J, Wang Y, Smith MR, et al: Suppression of in vivo tumor growth and induction of suspension cell death by tissue inhibitor of metalloproteinases (TIMP-3). Carcinogenesis 9:1805–1811, 1996.

    Google Scholar 

  34. Folkman J: Angiogenesis in cancer, vascular, rheumatoid and other disease. Nature Medicine 1:27–31, 1995.

    Article  PubMed  CAS  Google Scholar 

  35. Folkman J: Tumor angiogenesis: therapeutic implications. [Review]. New Engl J Med 285:1182–1186, 1971.

    PubMed  CAS  Google Scholar 

  36. Fox SB, Gatter KC, Harris AT: Tumour angiogenesis. J Pathology 179:232–237, 1996.

    Article  CAS  Google Scholar 

  37. Pluda JM: Tumor-associated angiogenesis: mechanisms, clinical implications, and therapeutic strategies. Seminars in Oncology 24:203–218, 1997.

    PubMed  CAS  Google Scholar 

  38. Chambers AF, Matrisian LM: Changing views of the role of matrix metalloproteinases in metastasis. J Natl Cancer Inst 89:1260–1270, 1997.

    Article  PubMed  CAS  Google Scholar 

  39. Moses MA: The regulation of neovascularization by matrix metalloproteinases and their inhibitors. Stem Cells 15:180–189, 1997.

    Article  PubMed  CAS  Google Scholar 

  40. Zucker S, Mirza H, Conner CE, et al: Vascular endothelial growth factor induces tissue factor and matrix metalloproteinase production in endothelial cells — conversion of prothrombin to thrombin results in progelatinase A activation and cell proliferation. Internat J Cancer 75:780–786, 1998.

    Article  CAS  Google Scholar 

  41. Karelina TV, Goldberg GI, Eisen AZ: Matrix metalloproteinases in blood vessel development in human fetal skin and in cutaneous tumors. J Invest Dermatol 105:411–417, 1995.

    Article  PubMed  CAS  Google Scholar 

  42. Taraboletti G, Garofalo A, Belotti D, et al: Inhibition of angiogenesis and murine hemangioma growth by batimastat, a synthetic inhibitor of matrix metalloproteinases. J Natl Cancer Inst 87:293–298, 1995.

    Article  PubMed  CAS  Google Scholar 

  43. Braunhut SJ, Moses MA: Retinoids modulate endothelial cell production of matrix-degrading proteases and tissue inhibitors of metalloproteinases (TIMP). J Biol Chem 269:13472–13479, 1994.

    PubMed  CAS  Google Scholar 

  44. Vacca A, Moretti S, Ribatti D, et al: Progression of mycosis fungoides is associated with changes in angiogenesis and expression of the matrix metalloproteinases 2 and 9. Eur J Cancer 33:1685–1692, 1997.

    Article  PubMed  CAS  Google Scholar 

  45. Itoh T, Tanioka M, Yoshida H, et al: Reduced angiogenesis and tumor progression in gelatinase A-deficient mice. Cancer Res 58:1048–1051, 1998.

    PubMed  CAS  Google Scholar 

  46. Vu TH, Shipley JM, Bergers G, et al: MMP-9/Gelatinase B is a Key Regulator of Growth Plate Angiogenesis and Apoptosis if Hypertropic Chondrocytes. Cell 93:411–422, 1998.

    Article  PubMed  CAS  Google Scholar 

  47. Chu YW, Yang PC, Yang SC, et al: Selection of Invasive and Metastatic Subpopulation from a Human Lung Adenocarcinoma Cell Line. Amer J Resp Cell Mol Biol 17:353 360, 1997.

    Google Scholar 

  48. MacDougall JR, Bani MR, Lin Y, et al: The 92-kDa gelatinase B is expressed by advanced stage melanoma cells: Suppression by somatic cell hybridization with early stage melanoma cells. Cancer Res 55:4174–4181, 1995.

    PubMed  CAS  Google Scholar 

  49. Ueda Y, Imai K, Tsuchiya H, et al: Matrix metalloproteinase 9 (gelatinase B) is expressed in multinucleated giant cells of human giant cell tumor of bone and is associated with vascular invasion. Amer J Pathol 148:611–622, 1996.

    CAS  Google Scholar 

  50. Kossakowska AE, Hinek A, Edwards DR, et al: Proteolytic activity of human non-Hodgkin’s lymphomas. Amer J Pathol 152:565–576, 1998.

    CAS  Google Scholar 

  51. Llorens A, Vinyals A, Alia P, et al: Metastatic Ability of MXT Mouse Mammary Subpopulations Coorelates with Clonal Expression and/or Membrane-Association of Gelatinase A. Molecular Carcinogenesis 19: 54–56, 1997.

    Article  PubMed  CAS  Google Scholar 

  52. Koshiba T, Hosotani R, Wada M, et al: Involvement of matrix metalloproteinase-2 activity in invasion and metastasis of pancreatic carcinoma. Cancer 82:642–50, 1998.

    Article  PubMed  CAS  Google Scholar 

  53. Deryugina EI, Luo GX, Reisfeld RA, et al: Tumor cell invasion through matrigel is regulated by activated matrix metalloproteinase-2. Anticancer Res 17:3201–3210, 1997.

    PubMed  CAS  Google Scholar 

  54. Koop S, Khokha R, Schmidt EE, et al: Overexpression of metalloproteinase inhibitor in B16F10 cells does not affect extravasation but reduces tumor growth. Cancer Res 54:4791–4797, 1994.

    PubMed  CAS  Google Scholar 

  55. Matrisian LM: Matrix metalloproteinase gene expression. Ann NY Acad Sci 732:42–50, 1993.

    Article  Google Scholar 

  56. Zeng ZS, Guillem JG: Distinct pattern of matrix metalloproteinase 9 and tissue inhibitor of metalloproteinase 1 mRNA expression in human colorectal cancer and liver metastases. Bri J Cancer 72:575–582, 1995.

    CAS  Google Scholar 

  57. Tomita T: Matrix metalloproteinases and tissue inhibitors of metalloproteinases in thyroid C-cells and medullary thyroid carcinomas. Histopathology 31:150–6, 1997.

    Article  PubMed  CAS  Google Scholar 

  58. Afzal S, Lalani EN, Poulsom R, et al: MT1-MMP and MMP-2 mRNA expression in human ovarian tumors: possible implications for the role of desmoplastic fibroblasts. Human Pathol 29:155–165, 1998.

    Article  CAS  Google Scholar 

  59. Harada T, Arii S, Mise M, et al: Membrane-type matrix metalloproteinase-1 (MT1-MMP) gene is overexpressed in highly invasive hepatocellular carcinomas. J Hepatology 28:231–239, 1998.

    Article  CAS  Google Scholar 

  60. Menashi S, Dehem M, Souliac I, et al: Density-dependent regulation of cell-surface association of matrix metalloproteinase-2 (MMP-2) in breast-carcinoma cells. Internat J Cancer 75:259–265, 1998.

    Article  CAS  Google Scholar 

  61. Endo K, Maehara Y, Baba H, et al: Elevated levels of serum and plasma metalloproteinases in patients with gastric cancer. Anticancer Res 17:2253–2258, 1997.

    PubMed  CAS  Google Scholar 

  62. Gohji K, Fujimoto N, Hara I, et al: Serum matrix metalloproteinase-2 and its density in men with prostate cancer as a new predictor of disease extension. Int J Cancer 79:96–101, 1998.

    Article  PubMed  CAS  Google Scholar 

  63. Kanayama H, Yokota K, Kurokawa Y, et al: Prognostic Values of matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-2 expression in bladder cancer. Cancer 82:1359–1366, 1998.

    Article  PubMed  CAS  Google Scholar 

  64. Alvarez OA, Carmichael DF, DeClerck YA: Inhibition of collagenolytic activity and metastasis of tumor cells by a recombinant human tissue inhibitor of metalloproteinases. J Natl Cancer Inst 82:589–595, 1990.

    Article  PubMed  CAS  Google Scholar 

  65. DeClerck YA, Perez N, Shimada H, et al: Inhibition of invasion and metastasis in cell transfected with an inhibitor of metalloproteinases. Cancer Res 52:701–708, 1992.

    PubMed  CAS  Google Scholar 

  66. Tsuchiya Y, Sato H, Endo Y, et al: Tissue inhibitor of metalloproteinase 1 is a negative regulator of the metastatic ability of a human gastric cancer cell line, KKLS, in the chick embryo. Cancer Res 53:1397–1402, 1993.

    PubMed  CAS  Google Scholar 

  67. Matsuzawa K, Fukuyama K, Hubbard SL, et al: Transfection of an invasive human astrocytoma cell line with a TIMP-1 cDNA: modulation of astrocytoma invasive potential. J Neuropathol Exp Neurol 55:88–96, 1996.

    Article  PubMed  CAS  Google Scholar 

  68. Hoyhtya M, Hujanen E, Turpeenniemi-Hujanen T, et al: Modulation of type-IV collagenase activity and invasive behavior of metastatic human melanoma (A2058) cells in vitro by monoclonal antibodies to type-IV collagenase. Int J Cancer 46:282–286, 1990.

    Article  PubMed  CAS  Google Scholar 

  69. French DL, Ramos-Desimone N, Rozinski K, et al: Matrix metalloproteinase-9 in tumor cell invasion. Ann NY Acad Sci 732:324–334, 1994.

    Article  PubMed  CAS  Google Scholar 

  70. Chirivi RGS, Garofalo A, Crimmin MJ, et al: Inhibition of the metastatic spread and growth of B16-BL6 murine melanoma by a synthetic matrix metalloproteinase inhibitor. Int J Cancer 58:460–464, 1994.

    Article  PubMed  CAS  Google Scholar 

  71. Aparicio T, Kermorgant S, Dessiner V, et al: Matrix Metalloproteinase inhibition prevents peritoneal carcinomatosis development and prolongs survival in rats. Carcinogenesis 20:1445–1451, 1999.

    Article  PubMed  CAS  Google Scholar 

  72. Steward WP: Marimastat (BB2516): current status of development. Cancer Chemotherapy and Pharmacology 43 Suppl.: 556–560, 1999.

  73. Rosemurgy A, Harris J, Langleben A, et al: Marimastat, a novel metalloproteinase inhibitor in patients with advanced carcinoma of the pancreas. 1996. Philadelphia.

  74. Rosemurgy A, Harris J, Langleben A, et al: Marimastat in patients with advanced pancreatic cancer: a dose finding study. Amer J Clin Oncol 22:247–252, 1999.

    Article  CAS  Google Scholar 

  75. Kroep JR, Pinedo HM, VanGroeningen CJ, et al: Experimental drugs and drug combinations in pancreatic cancer. Ann Oncol 10 Suppl:234–238, 1999.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Tuszynski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

John, A., Tuszynski, G. The role of matrix metalloproteinases in tumor angiogenesis and tumor metastasis. Pathol. Oncol. Res. 7, 14–23 (2001). https://doi.org/10.1007/BF03032599

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03032599

Keywords

Navigation