Skip to main content
Log in

Effect of cooling rate on the solidification Behavior of Al-7 Pct Si-SiCp Metal-Matrix Composites

  • Solidification
  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The solidification behavior of two composites based on Al-Si alloy has been investigated as a function of cooling rate. Thermal analysis techniques have been used to establish the relationship between solidification history and the microstructure developed. The results of thermal analysis show that the characteristic parameters are influenced by the cooling rate. A marked difference in these parameters is observed between the reinforced and the unreinforced materials at all cooling rates studied. The cooling rates used in the present study range from 0.3 to 20 K/s. Increasing the cooling rate is shown to affect the undercooling parameters both in the liquidus and eutectic solidification region. The eutectic growth temperature of the composites is observed to be higher than that of the base alloy at all cooling rates. The depression in eutectic temperature ΔT is found to decrease by 27 K for the unreinforced alloy (A356) and by 17 K for the com- posites (A356 + 10, 20 vol pct SiC) at a higher cooling rate of ≃16 K/s. The presence of SiC reinforcement is observed to suppress the Mg2Si precipitate formation and decrease the amount of heat liberated during both primary and eutectic phase formation. Dendrite arm spacing (DAS) is correlated to the cooling rate by a relationship of the form DAS =A(T) -n, wheren is found to be of the order of 0.33.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Flom and R.J. Arsenault:J. Met., 1986, vol. 38, p. 31.

    CAS  Google Scholar 

  2. P.K. Rohatgi, R. Asthana, and S. Das:Int. Met. Rev., 1986, vol. 31 (3), p. 115.

    CAS  Google Scholar 

  3. P.K. Rohatgi, R. Asthana, and F.M. Yarandi:Solidification of Metal Matrix Composites, TMS, Warrendale, PA, 1990, p. 51.

    Google Scholar 

  4. D.J. Lloyd:Proc. 12th RISO Int. Symp. on Materials Science, N. Hansen, D. Juul Jensen, T. Leffers, H. Liholt, T. Lorentzen, A.S. Pedersen, O.B. Pedersen, and B. Ralph, eds., Roskilde, Denmark, 1991, p. 81.

  5. I. Jin and DJ. Lloyd: inFabrication of Paniculate Reinforced Composites, J. Masounave and F.G. Hamel, eds., Asm International, Metals Park, OH, 1990, p. 47.

    Google Scholar 

  6. S. Das, S.V. Prasad, T.K. Dan, and P.K. Rohatgi:Proc. Conf. on Cast Reinforced Metal Matrix Composites, ASM INTERNATIONAL, Metals Park, OH, 1988, p. 243.

    Google Scholar 

  7. D.J. Lloyd:Compos. Sci. Technol., 1989, vol. 35, p. 159.

    Article  CAS  Google Scholar 

  8. D.J. Lloyd, H. Lagace, A. Mcleod, and P.L. Morris:Mater. Sci. Eng., 1989, vol. A107, p. 73.

    Article  CAS  Google Scholar 

  9. A. Wickberg, G. Gustaffson, and L.E. Larsson: SAE Tech. Paper 840121, 1984.

  10. K.J. Oswalt and M.S. Misra:Am. Foundrymen's Soc. Inst. Cast. Met. J., 1981, vol. 6, p. 23.

    CAS  Google Scholar 

  11. L. Backerud, E. Krol, and J. Tamminen:AFS/SKAN- Aluminium, 1990, vol. 1, p. 128.

    Google Scholar 

  12. J. Charbonnier:Am. Foundrymen's Soc. Trans., 1984, vol. 92, p. 907.

    CAS  Google Scholar 

  13. B.R. Krohn:Modern Casting, 1985, vol. 75, p. 21.

    Google Scholar 

  14. D. Apelian, G. Sigworth, and K. Whaler:Am. Foundrymen's Soc. Trans., 1984, vol. 92, p. 297.

    CAS  Google Scholar 

  15. L. Backerud, E. Krol, and J. Tamminen:AFS/SKAN- Aluminium, 1990, vol. 2, p. 128.

    Google Scholar 

  16. G.K. Sigworth:Am. Foundrymen's Soc. Trans., 1983, vol. 91, p. 7.

    CAS  Google Scholar 

  17. L.I. Mondolfo:Structure and Properties, Butterworth's, London, 1978.

    Google Scholar 

  18. B. Lee Tuttle:Proc. AFS/CM1 Conf. on Molten Aluminium, Dec. 11, 1984, Rosemont, IL, AFS Publications, p. 1.

    Google Scholar 

  19. B. Closset and J.E. Gruzleski:Metall. Trans. A, 1982, vol. 13A, p. 945–51.

    Article  CAS  Google Scholar 

  20. R.C. Harris, S. Lipton, and H. Rosenthal:Am. Foundrymen's Soc. Trans., 1956, vol. 64, p. 470.

    Google Scholar 

  21. M.D. Hanna, Shu-Zu Lu, and A. Hellawell:Metall. Trans. A, 1984, vol. 15A, pp. 459–69.

    Article  CAS  Google Scholar 

  22. B. Closset and J.E. Gruzleski:Am. Foundrymen's Soc. Trans., 1981, vol. 89, p. 801.

    CAS  Google Scholar 

  23. S.A. Argyropoulos, B. Closset, J.E. Gruzleski, and H. Oger:Am. Foundrymen's Soc. Trans., 1983, vol. 27, p. 351.

    Google Scholar 

  24. R. Dasgupta, C.G. Brown, and S. Marek:Am. Foundrymen's Soc. Trans., 1988, vol. 38, p. 297.

    Google Scholar 

  25. T.Z. Kattamis:Fundamentals of Alloy Solidification Applied to Industrial Processes Conf., NASA-Lewis Laboratory, Sept. 12, 1984.

  26. J. Charbonnier and A. Kearney:Am. Foundrymen's Soc. Trans., 1984, vol. 92.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gowri, S., Samuel, F.H. Effect of cooling rate on the solidification Behavior of Al-7 Pct Si-SiCp Metal-Matrix Composites. Metall Trans A 23 (Suppl 1), 3369–3376 (1992). https://doi.org/10.1007/BF03024544

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03024544

Keywords

Navigation