Skip to main content
Log in

A candidate for the “next fermat problem”

  • Article
  • Published:
The Mathematical Intelligencer Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. T. Beth, D. Jungnickel, and H. Lenz,Design Theory, Cambridge: Cambridge University Press (1986).

    MATH  Google Scholar 

  2. N. L. Biggs, T. P. Kirkman, mathematician,Bull. London Math. Soc. 13 (1981), 97–120.

    Article  MATH  MathSciNet  Google Scholar 

  3. R. C. Bose, On the application of the properties of Galois fields to the construction of hyper-Graeco-Latin squares,Sankhyā 3 (1938), 323–338.

    Google Scholar 

  4. R. C. Bose and S. S. Shrikhande, On the falsity of Euler’s conjecture about the non-existence of two orthogonal latin squares of order 4t + 2,Proc. Nat. Acad. Sci. U.S.A. 45 (1959), 734–737.

    Article  MATH  MathSciNet  Google Scholar 

  5. R. C. Bose, S. S. Shrikhande, and E. T. Parker, Further results on the construction of mutually orthogonal latin squares and the falsity of Euler’s conjecture,Can. J. Math. 12 (1960), 189–203.

    Article  MATH  MathSciNet  Google Scholar 

  6. A. E. Brouwer, Recursive constructions of mutually orthogonal latin squares, pp. 149-168 of [11].

  7. A. E. Brouwer, C. J. Colbourn, and J. H. Dinitz, Mutually orthogonal latin squares, inCRC Handbook of Combinatorial Designs (C. J. Colbourn and J. H. Dinitz, eds.), Boca Raton, FL, CRC Press (1995).

    Google Scholar 

  8. R. H. Brack and H. J. Ryser, The non-existence of certain finite projective planes,Can. J. Math. 1 (1949), 88–93.

    Article  Google Scholar 

  9. S. Chowla and H. J. Ryser, Combinatorial problems,Can..Math. 2 (1950), 93–99.

    Article  MATH  MathSciNet  Google Scholar 

  10. J. Dénes and A. D. Keedwell,Latin Squares and Their Applications, New York: Academic Press (1974).

    MATH  Google Scholar 

  11. J. Denes and A. D. Keedwell,Latin Squares, Annals of Discrete Math., Vol. 46, North-Holland, Amsterdam, 1991.

    Google Scholar 

  12. K. Devlin, Marginal interest,Focus 14 (1994), 16.

    Google Scholar 

  13. S. T. Dougherty, A coding theoretic solution to the 36 officer problem,Designs, Codes Cryptogr. 4 (1994), 123–128.

    Article  MATH  MathSciNet  Google Scholar 

  14. L. Euler, Recherches sur une nouvelle espèce de quarrés magiques,Verh. Zeeuwsch Genootsch. Wetensch. Vlissengen 9 (1782), 85–239.

    Google Scholar 

  15. L. Euler,Opera Omnia (Collected Works), Leipzig: Teubner (1911).

    Google Scholar 

  16. P. Höhler, Eine Verallgemeinerung von orthogonalen lateinischen Quadraten auf höhere Dimensionen, Diss. Dokt. Math. Eidgenöss Techn. Hochschule Zürich, 1970.

  17. C. W. H. Lam, L. Thiel, and S. Swiercz, The non-existence of finite projective planes of order 10,Can. J. Math. 41 (1989), 1117–1123.

    Article  MATH  MathSciNet  Google Scholar 

  18. C. F. Laywine, G. L. Mullen, and G. Whittle,D-dimensional hypercubes and the Euler and MacNeish conjectures,Monatsh. Math. 119 (1995), 223–238.

    Article  MATH  MathSciNet  Google Scholar 

  19. J. H. van Lint and R. M. Wilson,A Course in Combinatorics, Cambridge: Cambridge University Press (1992).

    MATH  Google Scholar 

  20. H. F MacNeish, Euler squares,Ann. Math. 23 (1922), 221 - 227.

    Article  MathSciNet  Google Scholar 

  21. E. H. Moore, Tactical memoranda I-III,Am. J. Math. 18 (1896), 264–303.

    Article  MATH  Google Scholar 

  22. G. L. Mullen and G. Whittle, Point sets with uniformity properties and orthogonal hypercubes,Monatsh. Math. 113 (1992), 265–273.

    Article  MATH  MathSciNet  Google Scholar 

  23. E. T. Parker, Construction of some sets of mutually orthogonal latin squares,Proc. Am. Math. Soc. 10 (1959), 946–949.

    Article  MATH  Google Scholar 

  24. E. T. Parker, Orthogonal latin squares,Proc. Nat. Acad. Sci. U.S.A. 21 (1960), 859–862.

    Google Scholar 

  25. S. S. Shrikhande, A note on mutually orthogonal latin squares,Sankhyā, Series A 23 (1961), 115–116.

    MATH  MathSciNet  Google Scholar 

  26. D. R. Stinson, A short proof of the nonexistence of a pair of orthogonal latin squares of order six,J. Combinat. Theory Series A 36 (1984), 373–376.

    Article  MATH  MathSciNet  Google Scholar 

  27. A. P. Street and D. J. Street,Combinatorics of Experimental Design, Oxford: Clarendon Press (1987).

    MATH  Google Scholar 

  28. R. M. Wilson, Concerning the number of mutually orthogonal latin squares,Discrete Math. 9 (1974), 181–198.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary L. Mullen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mullen, G.L. A candidate for the “next fermat problem”. The Mathematical Intelligencer 17, 18–22 (1995). https://doi.org/10.1007/BF03024365

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03024365

Keywords

Navigation