Skip to main content
Log in

Mesozoic calcareous nannofossils — state of the art

  • Published:
Paläontologische Zeitschrift Aims and scope Submit manuscript

Abstract

Calcareous nannofossils originated in the Triassic, radiated in the Jurassic and became a dominant component of the marine biosphere from the earliest Jurassic onward. They can be considered as one of the most important “innovations” of the Mesozoic oceans. Their basic morphology allows the differentiation of three different groups: coccoliths, nannoliths and calcispheres (= calcareous dinocysts). Only coccoliths and nannoliths are discussed in this article in some detail. Coccoliths and nannoliths have contributed greatly in the Interpretation of Mesozoic marine Systems through biostratigraphy and palaeoecology/palaeoceanography. Ever since the late 1960s both coccoliths and nannoliths have proven to be useful and reliable zonal markers for biostratigraphic schemes, allowing detailed zonations for the Jurassic and Cretaceous. Though affected by palaeobiogeographic provincialism, coccoliths and nannoliths have supplied many cosmopolitan biostratigraphic markers. These allow a global correlation of marine sedimentary units both from onshore sections in the classical European and North American areas and pelagic sequences recovered in the course of the DSDP/ODP drilling from the world’s oceans. Thus research on calcareous nannofossils Covers both, regional and global aspects. Research in the last 15 years concentrated on palaeoecological aspects. Apart from dinoflagellates, coccolithophores were the most important primary producers in Mesozoic oceans. As such they heavily relied on autecological factors such as light, nutrients and temperature. Variations in the assemblage composition of these groups may thus be viewed as a key for understanding palaeoecological, palaeoceanographic and palaeoclimatic changes of the past.

Kurzfassung

Kalkige Nannofossilien sind in der Trias entstanden, erlebten eine Radiation im Jura und sind seit dem Ober-Jura eine dominante Organismengruppe der marinen Biosphäre. Bei dieser Phytoplanktongruppe handelt es sich um eine der wichtigsten biologischen Neuerungen in den mesozoischen Ozeanen. Die Grundmorphologie erlaubt eine Unterscheidung von drei Gruppen: Coccolithen, Nannolithen und Calcisphären (= kalkige Dinoflagellatenzysten). Im vorliegenden Artikel werden nur die Coccolithen und die Nannolithen eingehender behandelt. Für zwei Bereiche haben Coccolithen und Nannolithen wichtige Informationen geliefert, die zu einer Neudeutung mesozoischer mariner Systeme geführt haben: 1. Biostratigraphie, 2. Paläoökologie/Paläoozeanographie. Seit der zweiten Hälfte der 60-er Jahre des 20. Jahrhunderts haben sich sowohl Coccolithen als auch Nannolithen als wichtige und nützliche Zonenleitfossilien für biostratigraphische Gliederungen erwiesen. Diese ermöglichen eine detaillierte Zonengliederung des Jura und der Kreide. Obwohl für Coccolithen und Nannolithen biogeographischer Provinzialismus bekannt ist, haben beide Gruppen viele kosmopolitische Leitformen geliefert. Mit Hilfe dieser Leitformen ist eine globale Korrelation mariner Sedimentabfolgen der klassischen On-shore Profile Europas und Nord Amerikas mit den pelagischen Abfolgen möglich, die im Rahmen des DSDP/ODP Programmes erbohrt wurden. Forschungsaktivitäten im Bereich des kalkigen Nannoplankton decken somit sowohl regionale als auch globale Aspekte ab. Die Forschung der letzten 15 Jahren fokussiert sich auf die Rolle dieser Gruppe als wichtige Primärproduzenten in den mesozoischen Ozeanen; neben Dinoflagellaten waren die Coccolithen die wichtigsten Primärproduzenten. Damit ist eine klare Abhängigkeit von autökologischen Faktoren wie Licht, Nährstoffen und Temperatur gegeben. Variationen in den Florenvergesellschaftungen sind somit ein wesentlicher Schlüssel zum Verständnis von paläoökologischen, paläoozeanographischen und paläoklimatischen Veränderungen der Vergangenheit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andruleit, H. 1995. Coccolithophoriden im Europäischen Nordmeer: Sedimentation und Akkumulation, sowie ihre Entwicklung während der letzten 15000 Jahre. — Berichte aus dem Sonderforschungsbereich 313 59: 1–111 p. (Christian-Albrechts-Universität zu Kiel).

  • Arthur, M.A.;Brumsack, H.J.;Jenkyns, H.C. &Schlanger, S.O. 1990. Stratigraphy, geochemistry, and paleoceanography of organic carbon-rich Cretaceous sequences. — In:Ginsburg, R.N. &Beaudoin, B., eds., Cretaceous Resources, Events and Rhythms. — NATO ASI Series 304: 75–119 Amsterdam (Kluwer Academic Publishers).

    Google Scholar 

  • Arkhangelsky, A.D. 1912. Upper Cretaceous deposits of east European Russia. — Materialien zur Geologie Russlands25: 1–631.

    Google Scholar 

  • Baumann, K.H.;Andruleit, H.;Böckel, B.;Geisen, M. &Kinkel, H. 2005. The significance of extant coccolithophores as indicators of ocean water masses, surface water temperature, and paleoproductivity: a review. — Paläontologische Zeitschrift79 (1): 93–112.

    Google Scholar 

  • Bellanca, A.;Claps, M.;Erba, E.;Masetti, D.;Neri, R.;Premoli Silva, I. &Venezia, F. 1996. Orbitally induced limestone/marlstone rhythms in the Albian-Cenomanian Cismon section (Venetian region, northern Italy): sedimentology, calcareous and siliceous plankton distribution, elemental and isotope geochemistry. — Palaeogeography, Palaeoclimatology, Palaeoecology126: 227–260.

    Google Scholar 

  • Below, R. &Kirsch, K.-H. 1997. Die Kerogen-Fazies der Tonstein-Blättertonstein-Rhythmite des Ober-Barrême/Unter-Apt im niedersächischen Becken (Norddeutschland) am Beispiel der Bohrung Hoheneggelsen KB 50. — Palaeontographica (B)242: 1–90.

    Google Scholar 

  • Bersezio, R.;Erba, E.;Gorza, M. &Riva, A. 2002. Berriasian-Aptian black shales of the Maiolica formation (Lombardian Basin, Southern Alps, Northern Italy): local to global events. — Palaeogeography, Palaeoclimatology, Palaeoecology180: 253–275.

    Google Scholar 

  • Billard, C. 1994. Life cycles. — In:Green, J.C. &Leadbeater, B.S.C., eds., The Haptophyte Algae. — Systematics Association Special Volume51: 167–186 Oxford (Oxford University Press).

    Google Scholar 

  • Bischoff, G. &Mutterlose, J. 1998. Calcareous nannofossils of the Barremian/Aptian boundary interval in NW Europe: biostratigraphic and palecologic implications of a high resolution study. — Cretaceous Research19: 635–661.

    Google Scholar 

  • Bornemann, A.;Aschwer, U. &Mutterlose, J. 2003. The impact of calcareous nannofossils on the pelagic carbonate accumulation across the Jurassic/Cretaceous boundary. — Palaeogeography, Palaeoclimatology, Palaeoecology199: 187–228.

    Google Scholar 

  • Bornemann, A.; Pross, J.; Reichelt, K.; Herrle, J.O.; Hemleben, C. & Mutterlose, J. submitted. Reconstruction of short-term palaeoceanographic changes during the formation of the “Niveau Breistroffer” (OAE 1d, SE France). — Journal of the Geological Society of London.

  • Bown, P.R. 1987. Taxonomy, biostratigraphy, and evolution of late Triassic-early Jurassic calcareous nannofossils. — Special Papers in Palaeontology38: 1–118.

    Google Scholar 

  • Bown, P.R. 1998. Calcareous nannofossil biostratigraphy. — 314 p., London (Chapman & Hall).

    Google Scholar 

  • Bown, P.R. &Young, J.R. 1997. Proposals for a revised Classification System for calcareous nannoplankton. — Journal of Nannoplankton Research19: 15–47.

    Google Scholar 

  • Bown, P.R. &Cooper, J.R. 1998. Jurassic. — In:Bown, P.R., ed., Calcareous nannofossil biostratigraphy: 34–85, London (Chapman & Hall).

    Google Scholar 

  • Bown, P.R. &Young, J.R. 1998. Introduction. — In:Bown, P.R., ed., Calcareous nannofossil biostratigraphy: 1–15, London (Chapman & Hall).

    Google Scholar 

  • Bown, P.R.;Rutledge, D.C.;Crux, J.A. &Gallagher, L.T. 1998. Lower Cretaceous. — In:Bown, P.R., ed., Calcareous nannofossil biostratigraphy: 86–102, London (Chapman & Hall).

    Google Scholar 

  • Bown, P.R.;Lees, J.A. &Young, J.R. in press. Calcareous nanno-plankton evolution and diversity through time. — In:Thierstein, H.R. &Young, J.R., eds., Coccolithophores — From molecular processes to global impact: 481–508, Berlin (Springer).

  • Braarud, T. 1954. Coccolith morphology and taxonomic position ofHymenomonas roseola Stein andSyracosphaera Braarud and Fagerland. — Nytt Magasin foer Botanik3: 1–6.

    Google Scholar 

  • Braarud, T.;Gaarder, K.R.;Markali, J. &Nordli, E. 1952. Coccolithophorids studied in the electron microscope. — Nytt Magasin foer Botanik1: 129–134.

    Google Scholar 

  • Bralower, T.J. 1987. Valanginian to Aptian calcareous nannofossil stratigraphy and correlation with the upper M-sequence magnetic anomalies. — Marine Micropalaeontology11: 293–310.

    Google Scholar 

  • Bralower, T.J. 1988. Calcareous nannofossil biostratigraphy and assemblages of the Cenomanian-Turonian boundary interval: implications for the orign and timing of oceanic anoxia. — Paleoceanography3: 275–316.

    Google Scholar 

  • Bralower, T.J.;Monechi, S. &Thierstein, H.R. 1989. Calcareous nannofossil zonation of the Jurassic-Cretaceous Boundary Interval and Correlation with the Geomagnetic Polarity Timescale. — Marine Micropaleontology14: 153–235.

    Google Scholar 

  • Bralower, T.J.;Bown, P.R. &Siesser, W.G. 1991. Significance of Upper Triassic nannofossils from the Southern Hemisphere (ODP Leg 122, Wombat Plateau, NW Australia). — Marine Micropaleontology17: 119–154.

    Google Scholar 

  • Bralower, T.J.;Sliter, W.V.;Arthur, M.A.;Leckie, R.M.;Allard, D. &Schlanger, S.O. 1993. Dysoxic/Anoxic Episodes in the Aptian-Albian Early Cretaceous. — In:Pringle, M.S.;Sager, W.W.;Sliter, W.V. &Stein, S., eds., The Mesozoic Pacific. Geology, Tectonics, and Volcanism: 5–37, Washington D.C. (American Geophysical Union).

    Google Scholar 

  • Bralower, T.J.;Arthur, M.A.;Leckie, R.M.;Sliter, W.V.;Allard, D. J. &Schlanger, S.O. 1994. Timing and Paleoceanography of Oceanic Dysoxia/Anoxia in the Late Barremian to Early Aptian Early Cretaceous. — Palaios9: 335–369.

    Google Scholar 

  • Bralower, T.J.;Leckie, R.M.;Sliter, W.V. &Thierstein, H.R. 1995. An integrated Cretaceous microfossil biostratigraphy. — In:Berggren, W.A.;Kent, D.V.;Aubry, M.-P. &Hardenbol, J., eds., Geochronology, time scales and global stratigraphic correlations. — SEPM Special Publications54: 65–79.

    Google Scholar 

  • Bralower, T. J.;CoBabe, E.;Clement, B.;Sliter, W.V.;Osburn, C.L. &Longoria, J. 1999. The record of global change in mid-Cretaceous Barremian-Albian sections from Sierra Madre, north-eastern Mexico. — Journal of Foraminiferal Research29:418–437.

    Google Scholar 

  • Bramlette, M.N. &Riedel, W.R. 1954. Stratigraphic value of the discoasters and some other microfossils related to recent coccolithophores. — Journal of Paleontology28: 385–403.

    Google Scholar 

  • Brand, L.E. 1994. Physiological ecology of marine coccolithophores. — In:Winter, A. &Siesser, W.G., eds., Coccolithophores: 39–50, Cambridge (Cambridge University Press).

    Google Scholar 

  • Bucefalo Palliani, R.B.;Cirilli, S. &Mattioli, E. 1998. Phytoplankton response and geochemical evidence of the lower Toarcian relative sea level rise in the Umbria-Marche basin (Central Italy). — Palaeogeography, Palaeoclimatology, Palaeoecology142: 33–50.

    Google Scholar 

  • Bucefalo Palliani, R.;Mattioli, E. &Riding, J.B. 2002. The response of marine phytoplankton and sedimentary organic matter to the early Toarcian (Lower Jurrasic) oceanic anoxic event in northern England. — Marine Micropaleontology46: 223–245.

    Google Scholar 

  • Buitenhuis, E.;de Baar, H. &Veldhuis, M. 1999. Photosynthesis and calcification inEmiliania huxleyi as a function of inorganic carbon species. — Journal of Phycology35: 949–959.

    Google Scholar 

  • Burnett, J.A. 1998. Upper Cretaceous. — In:Bown, P.R., ed., Calcareous nannofossil biostratigraphy: 134–199, London (Chapman & Hall).

    Google Scholar 

  • Burnett, J.A.;Young, J.R. &Bown, P.R. 2000. Calcareous nannoplankton and global climate change. — In:Culver, S.J. &Rawson, P.F., eds., Biotic response to global change: the last 145 million years: 35–50, Cambridge (Cambridge University Press).

    Google Scholar 

  • Busson, G. &Noel, D. 1991. Les nannoconidés indicateurs environmentaux des océans et mers épicontinentales du Jurassique terminal et du Crétacé inférieur. — Oceanologica Acta14: 333–356.

    Google Scholar 

  • Claps, M.;Erba, E.;Masetti, D. &Melchiorri, F. 1995. Milankovitch-type cycles recorded in Toarcian black shales from the Belluno Trough (Southern Alps, Italy). — Memorie di Scienze Geologiche47: 179–188.

    Google Scholar 

  • Cobianchi, M.;Luciani, V. &Menegatti, A. 1999. The Selli Level of the Gargano Promontory, Apulia, southern Italy: foraminiferal and calcareous nannofossil data. — Cretaceous Research20: 255–269.

    Google Scholar 

  • Coccioni, R.;Erba, E. &Premoli Silva, I. 1992. Barremian-Aptian calcareous plankton biostratigraphy from the Gorgo Cerbara section (Marche, central Italy) and implications for plankton evolution. — Cretaceous Research13: 517–537.

    Google Scholar 

  • Cooper, M.K.E. 1989. Nannofossil provincialism in the Late Jurassic-Early Cretaceous (Kimmeridgian to Valanginian) period. — In:Crux, J.A. &van Heck, S.E., eds., Nannofossils and their applications: 223–246, Chichester (Ellis Horwood).

    Google Scholar 

  • Cotillon, P. 1984. Tentative world-wide correlation of Early Cretaceous strata by limestone-marl cyclicities in pelagic deposits. — Bulletin of the Geological Society of Denmark33: 91–102.

    Google Scholar 

  • Cotillon, P.;Ferry, S.;Gaillard, C.;Jautee, E.;Latreille, G. &Rio, M. 1980. Fluctuation des paramètres du milieu marin dans le domaine vocontien (France Sud-Est) au Crétacé inférieur: mise en évidence par l’étude des formations marno-calcaires alternantes. — Bulletin de la Société Géologique de France22: 735–744.

    Google Scholar 

  • Cros, L.;Kleune, A.;Zeltner, A.;Billard, C. &Young, J.R. 2000. New examples of holococcolith-heterococcolith combination coccospheres and their implications for coccolithophorid biology. — Marine Micropaleontology39: 1–34.

    Google Scholar 

  • Crux, J.A. 1982. Upper Cretaceous (Cenomanian to Campanian) calcareous nannofossils. — In:Lord, A.R., ed., A stratigraphical index of calcareous nannofossils: 81–135, Chichester (Ellis Horwood).

    Google Scholar 

  • Crux, J.A. 1984. Biostratigraphy of Early Jurassic Calcareous Nannofossils from Southwest Germany. — Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen169: 160–186.

    Google Scholar 

  • Crux, J.A. 1989. Biostratigraphy and palaeogeographical applications of Lower Cretaceous nannofossils from north-west Europe. — In:Crux, J.A. &van Heck, S.E., eds., Nannofossils and their applications: 143–211, Chichester (Ellis Horwood).

    Google Scholar 

  • Dayman, J. 1858. Deep Sea soundings in the North Atlantic Ocean between Ireland and Newfoundland, made in HMS Cyclops. — London, Eyre and Spottiswoode.

    Google Scholar 

  • Deres, F. &Achéritéguy, J. 1980. Biostratigraphie des Nannoconidés. — Bulletin des Centres de Recherches Exploration. Production Elf-Aquitaine4: 1–53.

    Google Scholar 

  • Deflandre, G. 1952. Classe des Coccolithophoridés (Coccolithophoridae Lohmann, 1902). — In:Grassé, P.P., ed., Traité de Zoologie. Anatomie, systématique, biologie, 1, part 1, Phylogenie. Protozoaires: généralités. Flagellés: 439–470, Masson and Cie.

  • Deflandre, G. 1959. Sur les nannofossiles calcaires et leur systematique. — Revue de Micropaléontologie2: 127–152.

    Google Scholar 

  • Ehrenberg, C.G. 1836. Bemerkungen über feste mikroskopische anorganische Formen in den erdigen und derben Mineralien. — Abhandlungen der Königlich Preussischen Akademie der Wissenschaften Berlin1836: 84–85.

    Google Scholar 

  • Ehrenberg, C.G. 1840. Über die Bildungen der Kreidefelsen und Kreidemergels durch unsichtbare Organismen. — Abhandlungen der Königlich Preussischen Akademie der Wissenschaften Berlin1840: 59–147.

    Google Scholar 

  • Ehrenberg, C.G. 1854. Mikrogeologie. Das Erden und Felsen schaffende Wirken des unsichtbar kleinen selbständigen Lebens auf Erden. — 375 p., VI; 88 p., VII, Leipzig.

  • Eicher, D.L. &Diner, R. 1985. Foraminifera as indicators of water mass in the Cretaceous Greenhorn Sea, Western Interior. — In:Pratt, L.M.;Kauffman E.G. &Zelt, F.B., eds., Fine-grained deposits and biofacies of the Cretaceous Western Interior Seaway: evidence of cyclic sedimentary processes. — SEPM Fieldtrip Guidebook: 60–71.

  • Einsele, G.;Ricken, W. &Seilacher, A. 1991. Cycles and Events in Stratigraphy. — 955 p., Berlin (Springer).

    Google Scholar 

  • Erba, E. 1986. I nannofossili calcarei nell’Aptiano — Albiano (Cretacico inferiore): biostratigrafia paleoceanografia e diagenesi degli Scisti a Fucoidi del Pozzo Piobicco (Marche). — 313 p., Milano (Università Milano).

    Google Scholar 

  • Erba, E. 1987. Mid-Cretaceous cyclic pelagic facies from the Umbrian-Marchean Basin: what do calcareous nannofossils suggest? — International Nannoplankton Association Newsletters9: 52–53.

    Google Scholar 

  • Erba, E. 1989. Upper Jurassic to Lower Cretaceous Nannoconus distribution in some sections from Northern to Central Italy. — Memorie di Scienze Geologiche41: 255–261.

    Google Scholar 

  • Erba, E. 1991. Calcareous nannofossil distribution in pelagic rhythmic Sediments (Aptian-Albian Piobbico Core, Central Italy). — Rivista Italiana de Paleontologia e Stratigrafia97: 455–484.

    Google Scholar 

  • Erba, E. 1992. Middle Cretaceous calcareous nannofossils from the Western Pacific (Leg 129): Evidence for palaeoequatorial crossings. — Proceedings of the Ocean Drilling Program, Scientific Results129: 189–201, College Station Texas (Ocean Drilling Program).

    Google Scholar 

  • Erba, E. 1994. Nannofossils and superplumes: The early Aptian “nan-noconid crisis”. — Paleoceanography9: 483–501.

    Google Scholar 

  • Erba, E. submitted. Calcareous nannofossils and Mesozoic oceanic anoxic events. — Marine Micropaleontology.

  • Erba, E. &Premoli Silva, I. 1994. Orbitally driven cycles in trace-fossil distribution from the Piobicco core (late Albian, central Italy). — In:de Boer, P.L. &Smith, D.G., eds., Orbital Forcing and Cyclic Sequences. — International Association of Sedimentologists Special Publication19: 211–225.

    Google Scholar 

  • Erba, E. &Tremolada, F. 2004. Nannofossil carbonate fluxes during the early Cretaceous: phytoplankton response to nutrification episodes, atmospheric CO2 and anoxia. — Paleoceanography19: 1–18.

    Google Scholar 

  • Erba, E.;Castradori, D.;Guasti, G. &Ripepe, M. 1992. Calcareous nannofossils and Milankovitch cycles: the example of the Albian Gault Clay Formation (southern England). — Palaeogeography, Palaeoclimatography, Palaeoecology93: 47–69.

    Google Scholar 

  • Erba, E.;Watkins, D.K. &Mutterlose, J. 1995. Campanian dwarf calcareous nannofossils from Wodejebato Guyot. — Proceedings of the Ocean Drilling Program, Scientific Results144: 141–156, College Station Texas (Ocean Drilling Program).

    Google Scholar 

  • Erba, E.;Bartolini, A &Larson, R.L. 2004. Valanginian Weissert oceanic anoxic event. — Geology32: 149–152.

    Google Scholar 

  • Erbacher, J. &Thurow, J. 1997. Influence of oceanic anoxic events on the evolution of mid-Cretaceous radiolaria in the North Atlantic and western Tethys. — Marine Micropaleontology30: 139–158.

    Google Scholar 

  • Eshet, Y. &Almogli-Labin, A. 1996. Calcareous nannofossils as paleoproductivity indicators in Upper Cretaceous organic-rich sequences in Israel. — Marine Micropaleontology29: 37–61.

    Google Scholar 

  • Fenner, J. 1985. Late Cretaceous to Oligocene planktic diatoms. — In:Bolli, H.M.;Saunders, J.B. &Perch-Nielsen, K., eds., Plankton Stratigraphy: 713–762, Cambridge (Cambridge University Press).

    Google Scholar 

  • Fisher, C.G. &Hay, W.W. 1999. Calcareous nannofossils as indicators of mid-Cretaceous paleofertility along an ocean front, U.S. Estern Interior. — In:Barrera, E. &Johnson, C.C., eds., Evolution of the Cretaceous Ocean-Climate System. — Geological Society of America Special Paper332: 161–180.

    Google Scholar 

  • Fiet, N.;Beaudoin, B. &Parke, O. 2001. Lithostratigraphic analysis of Milankovitch cyclicity in pelagic Albian deposits of central Italy: implications for the duration of the stage and substages. — Cretaceous Research22: 265–275.

    Google Scholar 

  • Friedrich, O.;Reichelt, K.;Herrle, J.O.;Lehmann, J.;Pross, J. &Hemleben, C. 2003. Formation of the Late Aptian Niveau Fallot black shales in the Vocontian Basin (SE France): Evidence from foraminifera, palynomorphs, and stable isotopes. — Marine Micropaleontology49: 65–85.

    Google Scholar 

  • Gale, A.S.;Smith, A.B.;Monks, N.E.A.;Young, L.A.;Howard, A.;Wray, D.S. &Huggett J.M. 2000. Marine biodiversity through the Late Cenomanian-Early Turonian: palaeoceanographic Controls and sequence stratigraphic biases. — Journal of the Geological Society157: 745–757.

    Google Scholar 

  • Galeotti, S.;Sproveri, M.;Coccioni, R.;Bellanca, A. &Neri, R. 2003. Orbitally modulated black shale deposition in the Upper Albian Amadeus Segment (central Italy): a multi-proxy reconstruction. — Palaeogeography, Palaeoclimatology, Palaeoecology190: 441–458.

    Google Scholar 

  • Gallois, R.W. 1976. Coccolith blooms in the Kimmeridge Clay and origin of North Sea Oil. — Nature259: 473–475.

    Google Scholar 

  • Gallois, R.W. &Medd, A.W. 1979. Coccolith-rich marker bands in the English Kimmeridge Clay. — Geological Magazin116: 247–334.

    Google Scholar 

  • Gardin, S. 2002. Late Maastrichtian to early Danian calcareous nannofossils at the Elles (Northwest Tunisia). A tale of one million years across the K-T boundary. — Palaeogeography, Palaeoclimatology, Palaeoecology178: 211–231.

    Google Scholar 

  • Gärtner, S. &Bukry, D. 1969. Tertiary holococcoliths. — Journal of Paleontology43: 1213–1221.

    Google Scholar 

  • Gärtner, S. &Gentile, R. 1972. Problematic Pennsylvanian coccoliths from Missouri. — Micropalaeontology18: 401–404.

    Google Scholar 

  • Geisen, M.;Billard, C.;Broerse, A.;Cros, L.;Probert, I. &Young, J.R. 2002. Life-cycle associations involving pairs of holococcolithophorid species: intraspecific Variation or cryptic speciation? — European Journal of Phycology37: 531–550.

    Google Scholar 

  • Green, J.C. &Jordan, R.W. 1994. Sytematic history and taxonomy. — In:Green, J.C. &Leadbeater, B.S.C., eds., The Haptophyte Algae. — Systematics Association Special Volume51: 1–22, Oxford (Oxford University Press).

    Google Scholar 

  • Habermann, A. &Mutterlose, J. 1999. Early Aptian black shales from NW Germany: Calcareous nannofossils and their palaeoceanographic implications. — Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen212: 379–400.

    Google Scholar 

  • Haq, B. 1978. Calcareous nannoplankton. — In:Haq, B.U. &Boersma, A., eds., Introduction to Marine Micropalaeontology: 79–107, Amsterdam (Elsevier).

    Google Scholar 

  • Haq, B., ed. 1983. Nannofossil biostratigraphy. — Benchmark papers in Geology78: 1–386, Pennsylvania (Hutchinson & Ross).

    Google Scholar 

  • Hay, W.W. &Mohler, H.P. 1967. Calcareous nannoplankton from early Tertiary rocks at Pont Labau, France, and Palaeocene-Eocene correlations. — Journal of Palaeontology41: 1505–1541.

    Google Scholar 

  • Herbert, T.D. &Fischer, A.G. 1986. Milankovitch climatic origin of mid-Cretaceous black shale rhythms in central Italy. — Nature321: 739–743.

    Google Scholar 

  • Herrle, J.O. 2003. Reconstructing nutricline dynamics of mid-Cretaceous oceans: Evidence from calcareous nannofossils from the Niveau Paquier black shale (SE France). — Marine Micropaleontology47:307–321.

    Google Scholar 

  • Herrle, J.O. &Mutterlose, J. 2003. Calcareous nannofossils from the Aptian — early Albian of SE France: Paleoecological and biostratigraphic implications. — Cretaceous Research24: 1–22.

    Google Scholar 

  • Herrle, J.O. &Bollmann, J. submitted. Accuracy and reproducibility of absolute nannoplankton abundances using the filtration technique in combination with a rotary sample Splitter. — Marine Micropaleontology.

  • Herrle, J.O.;Pross, J.;Friedrich, O.;Kösler, P. &Hemleben, C. 2003a. Forcing mechanisms for mid-Cretaceous black shale formation: Evidence from the Upper Aptian and Lower Albian of the Vocontian Basin (SE France). — Palaeogeography, Palaeoclimatology, Palaeoecology190: 399–426.

    Google Scholar 

  • Herrle, J.O.;Pross, J.;Friedrich, O. &Hemleben, C. 2003b. Short-term environmental changes in the Cretaceous Tethyan Ocean: Micropaleontological evidence from the Early Albian Oceanic Anoxic Event lb. — Terra Nova15: 14–19.

    Google Scholar 

  • Honjo, S. &Okada, H. 1974. Community structure of coccolithophores in the photic layer of the mid-Pacific. — Micropaleontology20: 209–230.

    Google Scholar 

  • Houghton, S.D. 1991. Calcareous nannofossils. — In:Riding, R., ed., Calcareous algae and stromatolites: 217–266, Berlin (Springer).

    Google Scholar 

  • Jakubowski, M. 1987. A proposed Lower Cretaceous calcareous nan-nofossil zonation scheme for the Moray Firth area of the North Sea. — Abhandlungen der Geologischen Bundesanstalt Wien39: 99–119.

    Google Scholar 

  • Janofske, D. 1990. Eine neue „Calcisphäre”, Carnicalyxia tabellata n. g. n. sp. aus den Cassianer Schichten (Cordevol, unteres Karn) der Dolomiten. — Berliner Geowissenschaftliche Abhandlungen (A)124: 259–269.

    Google Scholar 

  • Janofske, D. 1992. Calcareous nannofossils of the Alpine Upper Triassic. — In:Hamrsmid, B. &Young, J.R., eds., Nannoplankton Research1: 87–109.

    Google Scholar 

  • Jarvis, I.;Carson, G.A.;Cooper, M.K.E.;Hart, M.B.;Leary, P.N.;Tocher, B.A.;Hörne, D. &Rosenfeld, A. 1988. Microfossil assemblages and the Cenomanian-Turonian (Late Cretaceous) oceanic anoxix event. — Cretaceous Research9: 3–103.

    Google Scholar 

  • Jeremiah, J. 1996. A proposed Albian to Lower Cenomanian nannofossil zonation for England and the North Sea Basin. — Journal of Micropalaeontology15: 97–129.

    Google Scholar 

  • Jeremiah, J. 2001. A Lower Cretaceous nannofossil zonation for the North Sea Basin. — Journal of Micropalaeontology20: 45–80.

    Google Scholar 

  • Kaenel, E. de;Bergen, J.A. &von Salis Perch-Nielsen, K. 1996. Jurassic calcareous nannofossil biostratigraphy of western Europe. Compilation of recent studies and calibration of bioevents. — Bulletin de la Société Géologique de France1996: 15–28.

    Google Scholar 

  • Kamptner, E. 1952. Das mikroskopische Studium des Skelettes der Coccolithineen (Kalkflagellaten). — Mikroskopie7: 232–244, 375–386.

    Google Scholar 

  • Kemper, E. 1987. Die Bedeutung der Foraminiferen und Ostrakoden für die Klima-Analyse der Kreide. — Geologisches Jahrbuch (A)96: 365–399.

    Google Scholar 

  • Kessels, K.;Mutterlose, J. &Ruffell, A. 2003. Calcareous nannofossils from late Jurassic Sediments of the Volga Basin (Russian Platform): evidence for productivity-controlled black shale deposition. — International Journal of Earth Sciences92: 743–757.

    Google Scholar 

  • Kohring, R.;Gottschling, M. &Keupp, H. 2005. Examples for character traits and palaeoecological significance of calcareous dinofiagellates. — Paläontologische Zeitschrift79 (1): xx-xx.

    Google Scholar 

  • Lamolda, M.A.;Gorostidi, A. &Paul, C.R.C. 1994. Quantitative estimates of calcareous nannofossil changes across the Plenus Marls (latest Cenomanian), Dover, England: implications for the generation of the Cenomanian-Turonian Boundary Event. — Cretaceous Research15: 143–164.

    Google Scholar 

  • Langdon, C.;Takahashi, T.;Sweeney, C.;Chipman, D.;Goddard, J.;Marubini, F.;Aceves, H.;Bärnett, H. &Atkinson, M. J. 2000. Effect of calcium carbonate Saturation State on the calcification rate of an experimental coral reef. — Global Biogeochemical Cycles14: 639–654.

    Google Scholar 

  • Larson, R.L. &Erba, E. 1999. Onset of the mid-Cretaceous green-house in the Barremian-Aptian: Igneous events and the biological, sedimentary, and geochemical responses. — Paleoceanography14: 663–678.

    Google Scholar 

  • Leckie, R.M.;Bralower, T.J. &Cashman, R. 2002. Oceanic anoxic events and plankton evolution: Biotic response to tectonic forcing during the mid-Cretaceous. — Paleoceanography17: 13.1–13.29.

    Google Scholar 

  • Lees, J. 2003. Calcareous nannofossil biogeography illustrates palaeoclimate change in the Late Cretaceous Indian Ocean. — Cretaceous Research23: 537–634.

    Google Scholar 

  • Lohmann, H. 1902. Die Coccolithophoridae. — Archiv für Protistenkunde1:89–165.

    Google Scholar 

  • Lohmann, H. 1909. Die Gehäuse und Gallertblasen der Appendicularien und ihre Bedeutung für die Erforschung des Lebens im Meer. — Verhandlungen Deutsche Zoologische Gesellschaft19: 200–239.

    Google Scholar 

  • Luciani, V.;Cobianchi, M. &Jenkyns, H.C. 2001. Biotic and geochemical responses to anoxic events. The Aptian pelagic succession of the Gargano Promontory southern Italy. — Geological Magazine138: 277–298.

    Google Scholar 

  • Manton, I. 1986. Functional parallels between calcified and uncalcified periplasts. — In:Leadbeater, B.S.C. &Riding, R., eds., Biomineralization of lower plants and animals. — Systematics Association Special Volume30: 157–172.

    Google Scholar 

  • Martini, E. 1971. Standard Tertiary and Quaternary calcareous nannoplankton zonation. — In:Farinacci, A., ed., Proceedings of the Second Planktonic Conference Roma 19702: 739–785, Rome (Edizioni Tecnoscienza).

    Google Scholar 

  • Mattioli, E. 1997. Nannoplankton productivity and diagenesis in the rhythmically bedded Toarcian-Aalenian Fiuminata section (Umbria-Marche Apennine, central Italy). — Palaeogeography, Palaeoclimatology, Palaeoecology130: 113–133.

    Google Scholar 

  • Mattioli, E. &Erba, E. 1999. Synthesis of calcareous nannofossil events in Tethyan Lower and Middle Jurassic successions. — Rivista Italiana di Paleontologia e Stratigrafia105: 343–376.

    Google Scholar 

  • McIntyre, A. &Bé, A.W.H. 1967. Modern Coccolithophoridae of the Atlantic Ocean-I. Placoliths and Cyrtoliths. — Deep Sea Research14:561–597.

    Google Scholar 

  • McIntyre, A.;Allan, W.H. &Roche, M.B. 1970. Modern pacific Coccolithophorida: a palaeontological thermometer. — Transactions of the New York Academy of Sciences32: 720–731.

    Google Scholar 

  • Melinte, M. &Mutterlose, J. 2001. A Valanginian (Early Cretaceous) “Boreal nannoplankton excursion” in sections from Rornania. — Marine Micropaleontology43: 1–25.

    Google Scholar 

  • Munnecke, A.;Samtleben, C.;Servais, T. &Vachard, D. 1999. SEM-observation of calcareous micro- and nannofossils from the Silurian of Gotland, Sweden: preliminary results. — Geobios32: 307–314.

    Google Scholar 

  • Munnecke, A.;Servais, T. &Varchard, D. 2001. New findings and stratigraphical distribution of the Ovummuridae (Palaeozoic calcareous microfossils). — Comptes-rendus de l’Académie des Sciences, Sciences de la Terre et des Planètes333: 179–185.

    Google Scholar 

  • Mutterlose, J. 1987. Calcareous nannofossils and belemnites as warmwater indicators from the NW-German Middle Aptian. — Geologisches Jahrbuch (A)96: 293–313.

    Google Scholar 

  • Mutterlose, J. 1989. Temperature-controlled migration of calcareous nannofloras in the north-west European Aptian. — In:Crux, J.A. &van Heck, S.E., eds., Nannofossils and their applications: 122–142, Chichester (Ellis Horwood).

    Google Scholar 

  • Mutterlose, J. 1991. Das Verteilungs- und Migrationsmuster des kalkigen Nannoplanktons in der borealen Unter-Kreide (Valangin-Apt) NW-Deutschlands. — Palaeontographica (B)221: 27–152.

    Google Scholar 

  • Mutterlose, J. 1992. Biostratigraphy and palaeobiogeography of Early Cretaceous calcareous nannofossils. — Cretaceous Research13: 167–189.

    Google Scholar 

  • Mutterlose, J. 1996. Calcareous nannofossil palaeoceanography of the Early Cretaceous of NW Europe. — Mitteilungen aus dem Geologischen Staatsinstitut in Hamburg77: 291–313.

    Google Scholar 

  • Mutterlose, J. &Böckel, B. 1998. The Barremian-Aptian interval in NW Germany. — A review. — Cretaceous Research19: 539–568.

    Google Scholar 

  • Mutterlose, J. &Kessels, K. 2000. Early Cretaceous calcareous nannofossils from high latitudes: implications for palaeobiogeography and palaeoclimate. — Palaeogeography, Palaeoclimatology, Palaeoecology160: 347–372.

    Google Scholar 

  • Mutterlose, J. &Ruffell, A. 1999. Milankovitch-scale palaeoclimate changes in pale-dark bedding rhythms from the early Cretaceous (Hauterivian & Barremian) of eastern England and northern Germany. — Palaeogeography, Palaeoclimatology, Palaeoecology154: 133–160.

    Google Scholar 

  • Mutterlose, J. &Wise, S.W. jr. 1990. Lower Cretaceous nannofossil biostratigraphy of ODP LEG 113 Holes 692B and 693A, Continental slope off east Antarctica, Weddell Sea. — Proceedings of the Ocean Drilling Program, Scientific Results113: 325–351, College Station Texas (Ocean Drilling Program).

    Google Scholar 

  • Müller, G. &Blaschke, R. 1969. Zur Entstehung des Posedonienschiefers (Lias). — Naturwissenschaften56: 635.

    Google Scholar 

  • Noël, D. &Manivit, H. 1978. Nannofaciès de “black shales” aptiennes et albiennes d’ Atiantique sud (legs 36 et 40). Intérêt sedimentologique. — Bulletin de la Société Géologique de France20: 491–502.

    Google Scholar 

  • Okada, H. &Bukry, D. 1980. Supplementary modification and introduction of code numbers to the low-latitude coccolith biostratigraphic zonation (Bukry, 1973; 1975). — Marine Micro-palaeontology5: 321–325.

    Google Scholar 

  • Okada, H. &Honjo, S. 1973. The distribution of oceanic coccolithophorids in the Pacific. — Deep-Sea Research20: 619–641

    Google Scholar 

  • Ostenfeld, C.H. 1900. Über Coccosphaera. — Zoologischer Anzeiger23: 198–200.

    Google Scholar 

  • Paasche, E. 1962. Coccolith formation. — Nature193: 1094–1095.

    Google Scholar 

  • Paul, C.R.C.;Lamolda, M.A.;Mitchell, S.F.;Vazirj, M.R.;Gorostidi, A. &Marshall, J.D. 1999. The Cenomanian-Turonian boundary at Eastbourne (Sussex, UK): a proposed European reference section. — Palaeogeography, Palaeoclimatology, Palaeoecology150: 83–121.

    Google Scholar 

  • Perch-Nielsen, K. 1979. Calcareous nannofossils from the Cretaceous between the North Sea and the Mediterranean. — In:Wiedmann, J., ed., Aspekte der Kreide Europas. — IUGS Series (A)6: 223–272.

    Google Scholar 

  • Perch-Nielsen, K. 1985. Mesozoic calcareous nannofossils. — In:Bolli, H.M.;Saunders, J.B. &Perch-Nielsen, K., eds., Plankton Stratigraphy: 329–426, Cambridge (Cambridge University Press).

    Google Scholar 

  • Pienaar, R.N. 1994. Ultrastructure and calcification of coccolithophores. — In:Winter, A. &Siesser, W.G., eds., Coccolithophores: 13–39, Cambridge (Cambridge University Press).

    Google Scholar 

  • Pospichal, J.J. 1994. Calcareous nannofossils at the K-T boundary, El Kef: No evidence for stepwise, gradual, or sequential extinctions. — Geology22: 99–102.

    Google Scholar 

  • Pospichal, J.J. &Wise, W.w. 1990. Maestrichtian calcareous nanno-fossil biostratigraphy of Maud Rise ODP Leg 113 Sites 689 and 690, Weddell Sea. — Proceedings of the Ocean Drilling Program, Scientific Results113: 465–487, College Station Texas (Ocean Drilling Program).

    Google Scholar 

  • Premoli Silva, I.;Erba, E. &Tornaghi, M.E. 1989. Palaeoenvironmental Signals and changes in surface fertility in mid Cretaceous Corg-rich pelagic facies of the Fucoid Marls (Central Italy). — Géobios, Memoire Spécial11: 225–236.

    Google Scholar 

  • Premoli Silva, I.;Erba, E.;Salvini, G.;Locatelli, C. &Verga, D. 1999. Biotic changes in Cretaceous oceanic anoxic events of the Tethys. — Journal of Foraminiferal Research29: 352–370.

    Google Scholar 

  • Prins, B. 1969. Evolution and stratigraphy of coccolithinids from the Lower and Middle Lias. — In:Brönnimann, P. &Renz, H.H., eds., Proceedings First International Conference on Planktonic microfossils, Geneva2: 547–558, Leiden (Brill).

    Google Scholar 

  • Rawson, P.F. 1971. The Hauterivian (Lower Cretaceous) biostratigraphy of the Speeton Clay of Yorkshire, England. — Newsletter on Stratigraphy1: 61–76.

    Google Scholar 

  • Rawson, P.F. &Mutterlose, J. 1983. Stratigraphy of the Lower B and basal Cement Beds (Barremian) of the Speeton Clay, Yorkshire, England. — Proceedings of the Geologists Association94: 133–146.

    Google Scholar 

  • Riebesell, U.;Zondervan, I.;Rost, B.;Tortell, P.D.;Zeebe, R.E. &Morel, F.M.M. 2000. Reduced calcification of marine plankton in response to increased atmospheric CO2. — Nature407: 364–367.

    Google Scholar 

  • Roth, P.H. 1978. Cretaceous nannoplankton biostratigraphy and oceanography of the northwestern Atlantic Ocean. — In:Benson, W.E.;Sheridan, R.E. et al., eds. Initial Reports of the Deep Sea Drilling Program44: 731–760, Washington D.C. (US Government Printing Office).

    Google Scholar 

  • Roth, P.H. 1981. Mid Cretaceous calcareous nannoplankton from the Central Pacific: Implications for paleoceanography. — In:Thiede, J.;Vallier, T.L. et al., eds., Initial Report Deep Sea Drilling Project62: 471–489, Washington D.C. (US Government Printing Office).

    Google Scholar 

  • Roth, P.H. 1987. Mesozoic calcareous nannofossil evolution; relation to paleoceanographic events. — Paleoceanography2: 601–611.

    Google Scholar 

  • Roth, P.H. &Bowdler, J.L. 1981. Middle Cretaceous calcareous nannoplankton biogeography and graphy of the Atlantic Ocean. — SEPM Special Publication32: 517–546.

    Google Scholar 

  • Roth, P.H. &Krumbach, K.R. 1986. Middle Cretaceous Calcareous Nannofossil Biogeography and Preservation in the Atlantic and Indian Oceans: Implications for Palaeoceanography. — Marine Micropalaeontology10: 235–266.

    Google Scholar 

  • Roth, P.H.;Medd, A.W. &Watkins, D.K. 1983. Jurassic calcareous nannofossil zonation, an overview with new evidence from Deep Sea Drilling Project Site 534A. — In:Sheridan, R.E. &Gradstein, F.M., eds., Initial Reports of the Deep Sea Drilling Program76: 573–579, College Station Texas (Ocean Drilling Program).

    Google Scholar 

  • Rowson, J.D.;Leadbeater, B.S.C. &Green, J.C. 1986. Calcium carbonate deposition in the motile (Crystallolithus) phase ofCoccolithus pelagicus (Prymnesiophyceae). — British Phycological Journal21: 359–370.

    Google Scholar 

  • Schiller, J. 1913. Vorläufige Ergebnisse der Phytoplankton-Untersuchungen auf den Fahrten SMS Najade in der Adria 1911–1912. Die Coccolithophoriden. — Sitzungsberichte der Königlichen Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche Klasse, Abteilung 1122: 597–617, Wien.

    Google Scholar 

  • Schlanger, S.O. &Jenkyns, H.C. 1976. Cretaceous anoxic events: causes and consequences. — Geologie en Mijnbouw55: 179–184.

    Google Scholar 

  • Schneider, F.K. 1964. Erscheinungsbild und Entstehung der rhythmischen Bankung der altkretazischen Tongesteine Nordwestfalens und der Braunschweiger Bucht. — Fortschritte in der Geologie des Rheinlandes und Westfalens7: 353–382.

    Google Scholar 

  • Siesser, W.G. 1977. Chemical composition of calcareous nannofossils. — South African Journal of Science73: 283–285.

    Google Scholar 

  • Siesser, W.G. 1993. Calcareous nannoplankton. — In:Lipps, J.H., ed., Fossil Prokaryotes and Protists: 169–201 Boston (Blackwell).

    Google Scholar 

  • Siesser, W.G. 1994. Historical background of coccolithophore studies. — In:Winter, A. &Siesser, W.G., eds., Coccolithophores: 1–12, Cambridge (Cambridge University Press).

    Google Scholar 

  • Sissingh, W. 1977. Biostratigraphy of Cretaceous calcareous nannoplankton. — Geologie en Mijnbouw56: 37.

    Google Scholar 

  • Stradner, H. 1963. New contributions to Mesozoic stratigraphy by means of nannofossils. — Proceedings of the Sixth World Petroleum Congress, Section 1, Paper 4: 167–183.

  • Street, C. &Bown, P.R. 2000. Palaeobiogeography of Early Cretaceous (Berriasian-Barremian) calcareous nannoplankton. — Marine Micropalaeontology39: 265–291.

    Google Scholar 

  • Thierstein, H.R. 1971. Tentative Lower Cretaceous Calcareous Nannoplankton Zonation. — Eclogae Geologicae Helveticae64: 459–488.

    Google Scholar 

  • Thierstein, H.R. 1973. Lower Cretaceous Calcareous Nannoplankton Biostratigraphy. — Abhandlungen der Geologischen Bundesanstalt Wien29: 1–52.

    Google Scholar 

  • Thierstein, H.R. 1976. Mesozoic calcareous nannoplankton biostratigraphy of marine Sediments. — Marine Micropalaeontology1: 325–362.

    Google Scholar 

  • Thierstein, H.R. 1980. Selective Dissolution of Late Cretaceous and Earliest Tertiary Calcareous Nannofossils: Experimental Evidence. — Cretaceous Research2: 165–176.

    Google Scholar 

  • Thierstein, H.R. 1981. Late Cretaceous nannoplankton and the change at the Cretaceous-Tertiary boundary. — In:Warme, J.E.;Douglas R.G. &Winterer, E.L., eds., The Deep Sea Drilling Project: a decade of progress: 355–394, Tulsa (SEPM, Special Publication).

    Google Scholar 

  • Thierstein, H.R. &Roth, P.H. 1991. Stable isotopic and carbonate cyclicity in Lower Cretaceous deep-sea Sediments: dominance of diagenetic effects. — Marine Geology97: 1–34.

    Google Scholar 

  • Thomsen, E. 1989a. Seasonal Variation in boreal Early Cretaceous calcareous nannofossils. — Marine Micropaleontology15: 123–152.

    Google Scholar 

  • Thomsen, E. 1989b. Seasonal variability in the production of Lower Cretaceous calcareous nannoplankton. — Geology17: 715–717.

    Google Scholar 

  • van Hinte, J.E. 1976. A Jurassic time scale. — American Association of Petroleum Geologists, Bulletin60: 489–497.

    Google Scholar 

  • Venrick, E.L. 1982. Phytoplankton in an oligotrophic ocean: Observation and questions. — Ecological Monographs52: 129–154.

    Google Scholar 

  • Wallich, G.C. 1861. Remarks on some novel phases of organic life, and on the boring powers of minute annelids, at great depths in the sea. — Annais and Magazine of Natural History (3)8: 52–58.

    Google Scholar 

  • Watkins, D.K. 1986. Calcareous nannofossil palaeoceanography of the Cretaceous Greenhorn Sea. — Bulletin of the Geological Society of America97: 1239–1249.

    Google Scholar 

  • Watkins, D.K. 1989. Nannoplankton productivity fluctuations and rhythmically-bedded pelagic carbonates of the Greenhorn Limestone (Upper Cretaceous). — Palaeogeography, Palaeoclimatology, Palaeoecology74: 75–86.

    Google Scholar 

  • Watkins, D.K.;Wise, S.W.;Pospichal, J.J. &Crux, J. 1996. Upper Cretaceous calcareous nannofossil biostratigraphy and palaeoceanography of the Southern Ocean. — In:Moguilevsky, A. &Whatley, R., eds., Microfossils and Oceanic Environments: 355–381, Aberystwyth (University of Wales).

    Google Scholar 

  • Westphal, H.;Munnecke, A.;Pross, J. &Herrle, J.O. 2004. The origin of Cretaceous pelagic limestone-marl alternations (DSDP Site 391, Blake-Bahama Basin) — A multi-proxy approach poses new questions. — Sedimentology51: 69–82

    Google Scholar 

  • Williams, J.R. &Bralower, T.J. 1995. Nannofossil assemblages, fine fraction stable isotopes, and the paleoceanography of the Valanginian-Barremian (Early Cretaceous) North Sea Basin. — Paleoceanography10: 815–839.

    Google Scholar 

  • Wind, F.H. 1979. Maestrichtian-Campanian nannofloral provinces of the Southern Atlantic and Ondian oceans. — Deep Drilling Results in the Atlantic ocean: Continental margins and paleoenvironment. Maurice Ewing Series: 123–137, Washinton D.C. (AGU).

    Google Scholar 

  • Worsley, T.R. 1974. The Cretaceous-Tertiary boundary event in the ocean. — SEPM Special Publication20: 94–121.

    Google Scholar 

  • Worsley, T. &Martini, E. 1970. Late Maastrichtian Nannoplankton Provinces. — Nature225: 1242–1243.

    Google Scholar 

  • Young, J.R. 1994. Functions of coccoliths. — In:Winter, A. &Siesser, W.G., eds., Coccolithophore: 63–82, Cambridge (Cambridge University Press).

    Google Scholar 

  • Young, J.R. &Bown, P.R. 1991. An ontogenetic sequence of coccoliths from the Late Jurassic Kimmeridge Clay of England. — Palaeontology34: 843–850.

    Google Scholar 

  • Young, J.R. &Bown, P.R. 1997. Higher Classification of calcareous nannofossils. — Journal of Nannoplankton Research19: 15–20.

    Google Scholar 

  • Young, J.R.;Didymus, J.M.;Bown, P.R.;Prins, B. &Mann, S. 1992. Crystal assembly and phylogenetic evolution in heterococcoliths. — Nature356: 516–518.

    Google Scholar 

  • Young, J.R.;Kucera, M. &Chung, H.-W. 1996. Automated biometrics on captured light microscope images of coccoliths ofEmiliania huxleyi. — In:Moguilewski, A. &Whatley, R., eds., Microfossils and Oceanic Environments: 261–277, Aberystwyth (University of Wales).

    Google Scholar 

  • Young, J.R.;Bergen, J.A.;Bown, P.R.;Burnett, J.A.;Fiorentino, A.;Jordan, R.W.;Kleijne, A.;van Niel, B.E.;Ton Romein, A.J. &von Salis, A.K. 1997. Guidelines for coccolith and calcareous nannofossil terminology. — Palaeontology40: 875–912.

    Google Scholar 

  • Young, J.R.;Davis, S.A.;Bown, P.R. &Mann, S. 1999. Coccolith ultrastructure and biomineralisation. — Journal of Structural Biology126: 195–215.

    Google Scholar 

  • Zondervan, I.;Zeebe, R.E.;Rost, B. &Riebesell, U. 2001. Decreasing marine biogenic calcification: a negative feedback on rising atmospheric pCO2. — Global Biogeochemical Cycles15: 507–516.

    Google Scholar 

  • Zonneveld, K.A.F.;Meier, S.K.J.;Esper, O.;Siggelkow, D.;Wendler, I. &Willems, H. 2005. The (palaeo-) environmental significance of modern calcareous dinoflagellate cysts: a review. — Paläontologische Zeitschrift79 (1): 61–77.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mutterlose, J., Bornemann, A. & Herrle, J.O. Mesozoic calcareous nannofossils — state of the art. Paläontol Z 79, 113–133 (2005). https://doi.org/10.1007/BF03021757

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03021757

Keywords

Schlüsselwörter

Navigation