Skip to main content
Log in

Applications of SPECT imaging of dopaminergic neurotransmission in neuropsychiatric disorders

  • Review
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Single photon emission computed tomography (SPECT) tracers selective for pre- and post-synaptic targets have allowed measurements of several aspects of dopaminergic (DA) neurotransmission. In this article, we will first review our DA transporter imaging in Parkinson's disease. We have developed thein vivo dopamine transporter (DAT) imaging with [123I]β-CIT ((1R)-2β-Carbomethoxy-3β-(4-iodophenyl)tropane). This method showed that patients with Parkinson's disease have markedly reduced DAT levels in striatum, which correlated with disease severity and disease progression. Second, we applied DA imaging techniques in patients with schizophrenia. Using amphetamine as a releaser of DA, we observed the enhanced DA release, which was measured by imaging D2 receptors with [123I]IBZM (iodobenzamide), in schizophrenics. Further we developed the measurement of basal synaptic DA levels by AMPT (alpha-methyl-paratyrosine)-induced unmasking of D2 receptors. Finally, we expanded our techniques to the measurement of extrastriatal DA receptors using [123I]epidepride.

The findings suggest that SPECT is a useful technique to measure DA transmission in human brain and may further our understanding of the pathophysiology of neuropsychiatric disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F. Brain dopamine and the syndromes of Parkinson and Huntington: clinical, morphological, and neurochemical correlations.J Neurol Sci 20: 415–455, 1973.

    Article  PubMed  CAS  Google Scholar 

  2. Kish SJ, Shannak K, Hornykiewicz O. Uneven pattern of dopamine loss in the stratum of patients with idiopathic Parkinson's disease.New Eng J Med 318: 876–880, 1988.

    Article  PubMed  CAS  Google Scholar 

  3. McGeer PL, Itagaki S, Akiyama S, McGeer EG. Rate of cell death in Parkinsonism is an active neuropathological process.Ann Neurol 24: 574, 1988.

    Article  PubMed  CAS  Google Scholar 

  4. Fearnley J, Lees A. Striatonigral degeneration: a clinicopathological study.Brain 113: 1823–1842, 1990.

    Article  PubMed  Google Scholar 

  5. Calne DB, Langston JW, Martin WRW, Stoessl AJ, Ruth TJ, Adam MJ, et al. PET after MPTP: observations relating to the cause of Parkinson's disease.Nature 317: 246–248, 1985.

    Article  PubMed  CAS  Google Scholar 

  6. Eidelberg D, Moeller JR, Dhawan V, Sidtis JJ, Ginos JZ, Strother SC, et al. The metabolic anatomy of Parkinson's disease complementary [18F] flourodopa positron emission tomographic studies.Mov Disord 5: 203–213, 1990.

    Article  PubMed  CAS  Google Scholar 

  7. Leenders KL, Salmon EP, Tyrrell P, Perani D, Brooks DJ, Sager H, et al. The nigrostriatal dopaminergic system assessedin vivo by PET in healthy volunteer subjects and patients with Parkinson's disease.Arch Neurol 47 (Dec): 1290–1298, 1990.

    PubMed  CAS  Google Scholar 

  8. Brooks DJ. Functional imaging in relation to parkinsonian syndromes.J Neurol Sci 115: 1–17, 1993.

    Article  PubMed  CAS  Google Scholar 

  9. Marek KL, Seibyl JP, Zoghbi SS, Zea-Ponce Y, Baldwin RM, Fussell B, et al. [123I]β-CIT SPECT imaging demonstrates bilateral loss of dopamine transporters in hemi-Parkinson's disease.Neurology 46: 231–237, 1996.

    PubMed  CAS  Google Scholar 

  10. Asenbaum S, Brücke T, Pirker W, Podreka I, Angelberger P, Wenger S, et al. Imaging of dopamine transporters with iodine-123-β-CIT and SPECT in Parkinson's disease.J Nucl Med 38: 1–6, 1997.

    PubMed  CAS  Google Scholar 

  11. Seibyl JP, Marek KL, Quinlan D, Sheff K, Zoghbi SS, Zea-Ponce Y, et al. Decreased single-photon emission computed tomographic [123I]β-CIT striatal uptake correlates with symptom severity in idiopathic Parkinson's disease.Ann Neurol 38: 589–598, 1995.

    Article  PubMed  CAS  Google Scholar 

  12. Vingerhoets FJG, Snow BJ, Lee CS, Schulzer M, Mak E, Calne DB. Longitudinal fluorodopa positron emission tomographic studies of the evolution of idiopathic Parkinsonism.Ann Neurol 36: 759–764, 1994.

    Article  PubMed  CAS  Google Scholar 

  13. Leenders K, Antonini A. PET18F-Fluorodopa (FD) uptake, and disease progression in Parkinson's disease.Neurology 45: A220, 1995.

    Google Scholar 

  14. Morrish PK, Sawle GV, Brooks DJ. An [18F]dopa-PET and clinical study of the rate of progression in Parkinson's disease.Brain 119: 585–591, 1996.

    Article  PubMed  Google Scholar 

  15. Laruelle M, Wallace E, Seibyl JP, Baldwin RM, Zea-Ponce Y, Zoghbi SS, et al. Graphical, kinetic, and equilibrium analyses ofin vivo [123I]β-CIT binding to dopamine transporters in healthy human subjects.J Cereb Blood Flow Metab 14: 982–994, 1994.

    PubMed  CAS  Google Scholar 

  16. Laruelle M, Baldwin RM, Rattner Z, Al-Tikriti MS, Zea-Ponce Y, Zoghbi SS, et al. SPECT quantification of [123I]iomazenil binding to benzodiazepine receptors in nonhuman primates. I. Kinetic modeling of single bolus experiments.J Cereb Blood Flow Metab 14: 439–452, 1994.

    PubMed  CAS  Google Scholar 

  17. Laruelle M, Abi-Dargham A, Al-Tikriti MS, Baldwin RM, Zea-Ponce Y, Zoghbi SS, et al. SPECT quantification of [123I]iomazenil binding to benzodiazepine receptors in nonhuman primates. II. Equilibrium analysis of constant infusion experiments and correlation within vitro parameters.J Cereb Blood Flow Metab 14: 453–465, 1994.

    PubMed  CAS  Google Scholar 

  18. van Dyck CH, Seibyl JP, Malison RT, Wallace E, Zoghbi SS, Zea-Ponce Y, et al. Age-related decline in dopamine transporter binding in human striatum with [123I]β-CIT SPECT.J Nucl Med 36: 1175–1181, 1995.

    PubMed  Google Scholar 

  19. Zelnik N, Angel I, Paul SM, Kleinman JE. Decreased density of human striatal dopamine uptake sites with age.Eur J Pharmacol 126: 175–176, 1986.

    Article  PubMed  CAS  Google Scholar 

  20. De Keyser JD, Ebinger G, Vauquelin G. Age-related changes in the human nigrostriatal dopaminergic system.Ann Neurol 27: 157–161, 1990.

    Article  PubMed  Google Scholar 

  21. Innis RB, Marek K, Sheff K, Zoghbi S, Castronovo. J, Feigin A, et al. Effect of treatment withl-dopa/carbidopa orl-selegiline on striatal dopamine transporter imaging with [123I]β-CIT.Mov Disord, submitted.

  22. Carlsson A, Lindqvist M. Effect of chloropromazine or haloperidol on formation of 3-methoxytyramine and normetanephrine in mouse brain.Acta Pharmacol Toxicol 20: 140–144, 1963.

    CAS  Google Scholar 

  23. Seeman P, Lee T. Antisychotic drugs: direct correlation between clinical potency and presynaptic action on dopamine neurons.Science 188: 1217–1219, 1975.

    Article  PubMed  CAS  Google Scholar 

  24. Creese I, Burt DR, Snyder SH. Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs.Science 192: 481–483, 1976.

    Article  PubMed  CAS  Google Scholar 

  25. Lieberman JA, Kane JM, Alvir J. Provocative tests with psychostimulant drugs in schizophrenia.Psychopharmacology 91: 415–433, 1987.

    Article  PubMed  CAS  Google Scholar 

  26. Seeman P. Dopamine receptors and the dopamine hypothesis of schizophrenia.Synapse 1: 133–152, 1987.

    Article  PubMed  CAS  Google Scholar 

  27. Carlsson A. The current status of the dopamine hypothesis of schizophrenia.Neuropsychopharmacology 1: 179–186, 1988.

    Article  PubMed  CAS  Google Scholar 

  28. Reynolds GP. Beyond the dopamine hypothesis, the neurochemical pathology of schizophrenia.Br J Psychiatry 155: 305–316, 1989.

    PubMed  CAS  Google Scholar 

  29. Davis KL, Kahn RS, Ko G, Davidson M. Dopamine in schizophrenia: a review and reconceptualization.Am J Psychiatry 148: 1474–1486, 1991.

    PubMed  CAS  Google Scholar 

  30. Lee T, Seeman P, Tourtelotte WW, Farley IJ, Hornykiewicz O. Binding of3H-neuroleptics and3H-apomorphine in schizophrenic brains.Nature 274: 897–900, 1978.

    Article  PubMed  CAS  Google Scholar 

  31. Owen F, Cross AJ, Longden A, Poulter MGJR. Increased dopamine-receptor sensitivity in schizophrenia.Lancet: 223–226, 1978.

  32. Cross AJ, Crow TJ, Owen F.3H-Flupenthixol binding in postmortem brains of schizophenics: evidence for a selective increase in dopamine D2 receptors.Psychopharmacology 74: 122–124, 1981.

    Article  PubMed  CAS  Google Scholar 

  33. Crow TJ, Johnstone EC, Longden AJ, Owen F. Dopaminergic mechanisms in schizophrenia: the antipsychotic effect and the disease process.Life Sci 23: 563–567, 1978.

    Article  PubMed  CAS  Google Scholar 

  34. Taeber K, Zapf R, Rupp W. Pharmacodynamic comparison of the acute effects of nomifensine, amphetamine and placebo in healthy volunteers.Int J Clin Pharmacol Biopharm 139: 991–997, 1979.

    Google Scholar 

  35. Toru M, Watanabe S, Shibuya H, Nishikawa T, Noda K, Ichikawa HM, et al. Neurotransmitters, receptors and neuropeptides in post-mortem brains of chronic schizophrenic patients.Acta Psychiatr Scand 78: 121–137, 1988.

    Article  PubMed  CAS  Google Scholar 

  36. Wong DF, Wagner HN Jr, Tune LE, Dannals RF, Pearlson GD, Links JM, et al. Positron emission tomography reveals elevated D2 dopamine receptors in drug naive schizophrenics.Science 234: 1558–1563, 1986.

    Article  PubMed  CAS  Google Scholar 

  37. Tune LE, Wong DF, Pearlson G, Strauss M, Young T, Shaya EK, et al. Dopamine D2 receptor density estimates in schizophrenia: a positron emission tomography study with11C-n-Methylspiperone.Psychiatry Res 49: 219–237, 1993.

    Article  PubMed  CAS  Google Scholar 

  38. Farde L, Wiesel F-A, Stone-Elander S, Halldin C, Nordstrom A-L, Hall H, et al. D2 dopamine receptors in neuroleptic-naive schizophrenic patients.Arch Gen Psychiatry 47: 213–219, 1990.

    PubMed  CAS  Google Scholar 

  39. Hietala J, Syvalahti E, Vuorio K, Nagren K, Lehikoinen PUR, et al. Striatal D2 receptor characteristics in neuroleptic-naive schizophrenic patients studied with positron emission tomography.Arch Gen Psychiatry 51: 116–123, 1994.

    PubMed  CAS  Google Scholar 

  40. Pilowsky LS, Costa DC, Ell PJ, Verhoeff NPLG, Murray RM, Kerwin RW. D2 dopamine receptor binding in the basal ganglia of antipsychotic-free schizophrenic patients. An123I-IBZM single photon emission computerized tomography study.Br J Psychiatry 164: 16–26, 1994.

    Article  PubMed  CAS  Google Scholar 

  41. Farde L, Nordstrom AL, Wiesel FA, Pauli S, Halldin C, Sedvall G. Positron emission tomography analysis of central D1 and D2 dopamine receptor occupancy in patients treated with classical neuroleptics and clozapine.Arch Gen Psychiatry 49: 538–544, 1992.

    PubMed  CAS  Google Scholar 

  42. Volkow ND, Wang G-J, Fowler JS, Logan J, Schlyer D, Hitzemann R, et al. Imaging endogenous dopamine competition with [11C]raclopride in the human brain.Synapse 16: 255–262, 1994.

    Article  PubMed  CAS  Google Scholar 

  43. Innis RB, Malison RT, Al-Tikriti M, Hoffer PB, Sybirska EH, Seibyl JP, et al. Amphetamine-stimulated dopamine release competesin vivo for [123I]IBZM binding to the D2 receptor in nonhuman primates.Synapse 10: 177–184, 1992.

    Article  PubMed  CAS  Google Scholar 

  44. Laruelle M, Iyer R, Al-Tikriti M, Zea-Ponce Y, Malison R, Zoghbi S, et al. Microdialysis and SPECT measurements of amphetamine-induced dopamine release in nonhuman primates.Synapse 25: 1–14, 1997.

    Article  PubMed  CAS  Google Scholar 

  45. Laruelle M, Abi-Dargham A, van Dyck CH, Rosenblat W, Zea-Ponce Y, Zoghbi SS, et al. SPECT imaging of striatal dopamine release after amphetamine challenge in humans.J Nucl Med 36: 1182–1190, 1995.

    PubMed  CAS  Google Scholar 

  46. Farde L, Nordstrom A-L, Wiesel F-A, Pauli S, Halldin C, Sedvall G. PET analysis of central D1 and D2 dopamine receptor occupancy in patients treated with classic neuroleptics and clozapine—relationship to extrapyramidal side effects.Arch Gen Psychiatry 49: 538–544, 1992.

    PubMed  CAS  Google Scholar 

  47. Laruelle M, Abi-Dargham A, van Dyck C, Gil R, D'Souza C, Erdos J, et al. Single photon computerized tomography of amphetamine induced dopamine release in drug-free schizophrenic subjects.Proc Natl Acad Sci USA 93: 9235–9240, 1996.

    Article  PubMed  CAS  Google Scholar 

  48. Abi-Dargham A, Laruelle M, Krystal J, D'Souza C, Zoghbi S, Baldwin RM, et al. No evidence of alteredin vivo benzodiazepine receptor binding in schizophrenia.Neuropsychopharmacol 20: 650–661, 1999.

    Article  CAS  Google Scholar 

  49. Breier A, Su TP, Saunders R, Carson RE, Kolachana BS, deBartolomeis A, et al. Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: Evidence from a novel positron emission tomography method.Proc Natl Acad Sci USA 94 (6): 2569–2574, 1997.

    Article  PubMed  CAS  Google Scholar 

  50. Wong DF, Yokoi F, Grunder G, Hong C, Szymanski S, Dogun A, et al. The effect of intrasynaptic dopamine release on measuring Bmax and Bmax/KD in schizophrenia by PET (abstract).J Nucl Med 38: 11P, 1997.

  51. Spector S, Sjoerdsma A, Udenfriend S. Blockade of endogenous norepinephrine synthesis by alpha-methyltyrosine, an inhibitor of tyrosine hydroxylase.J Pharmacol Exp Therap 147: 86–95, 1965.

    CAS  Google Scholar 

  52. Laruelle M, D'Souza C, Baldwin RM, Abi-Dargham A, Kanes S, Fingado CL, et al. Imaging D2 receptor occupancy by endogenous dopamine in humans.Neuropsychopharmacology 17: 162–174, 1997.

    Article  PubMed  CAS  Google Scholar 

  53. Engelman K, Horwitz D, Jéquier E, Sjoerdsma A. Biochemical and pharmacological effects of alpha-methyltyrosine in man.J Clin Invest 47: 577–594, 1968.

    Article  PubMed  CAS  Google Scholar 

  54. Ross SB. Synaptic concentration of dopamine in the mouse striatum in relationship to the kinetic properties of the dopamine receptors and uptake mechanism.J Neurochem 56: 22–29, 1991.

    Article  PubMed  CAS  Google Scholar 

  55. Narang N, Wamsley JK. Time dependent changes in DA uptake sites, D1 and D2 receptor binding and mRNA after 6-OHDA lesions of the medial forebrain bundle in the rat brain.J Chem Neuroanat 9 (1): 41–53, 1995.

    Article  PubMed  CAS  Google Scholar 

  56. Pycock CJ, Kerwin RW, Carter CJ. Effect of lesion of cortical dopamine terminals on subcortical dopamine receptors in rats.Nature 286: 74–77, 1980.

    Article  PubMed  CAS  Google Scholar 

  57. Weinberger DR. Implications of normal brain development for the pathogenesis of schizophrenia.Arch Gen Psychiatry 44: 660–669, 1987.

    PubMed  CAS  Google Scholar 

  58. Kessler RM, Mason NS, Votaw JR, Depaulis T, Clanton JA, Ansari MS, et al. Visualization of extrastriatal dopamine D2 receptors in the human brain.Eur J Pharmacol 223 (1): 105–107, 1992.

    Article  PubMed  CAS  Google Scholar 

  59. Mukherjee J, Yang ZY, Das MK, Brown T. Fluorinated benzamide neuroleptics. III. Development of (S)-N-[(1-allyl-2-pyrrolidinyl)methyl]-5-(3-[18F]fluoropropyl)-2,3-dimethoxybenzamide as an improved dopamine D-2 receptor tracer.Nucl Med Biol 22: 283–296, 1995.

    Article  PubMed  CAS  Google Scholar 

  60. Rieck R, Ansari M, Mason N, Whetsell W, Kessler R. Selective distribution of dopamine D2 and D3 receptors subtypes within the human thalamus defined within vivo PET imaging and receptor autoradiography in postmortem tissue.J Nucl Med 38: 81, 1997.

    Google Scholar 

  61. Farde L, Suhara T, Nyberg S, Karlsson P, Nakashima Y, Hietala J, et al. A PET-study of [11C]FLB 457 binding to extrastriatal D2-dopamine receptors in healthy subjects and antipsychotic drug-treated patients.Psychopharmacology 133: 396–404, 1997.

    Article  PubMed  CAS  Google Scholar 

  62. Delforge J, Bottlaender M, Loc'h C, Guenther I, Bendriem C, Syrota A, et al. Quantitation of extrastriatal D2 receptors using a very high-affinity ligand (FLB 457) and the multiinjection approach.J Cereb Blood Flow Metab 19: 533–546, 1999.

    Article  PubMed  CAS  Google Scholar 

  63. Fujita M, Seibyl JP, Verhoeff NP, Ichise M, Baldwin RM, Zoghbi SS, et al. Kinetic and equilibrium analyses of [123I]epidepride binding to striatal and extrastriatal dopamine D2 receptors.Synapse 34: 290–304, 1999.

    Article  PubMed  CAS  Google Scholar 

  64. Ichise M, Fujita M, Seibyl JP, Verhoeff NP, Baldwin RM, Zoghbi SS, et al. Graphical analysis and simplified quantification of striatal and extrastriatal dopamine D2 receptor binding with iodine-123-epidepride SPECT.J Nucl Med 40: 1902–1912, 1999.

    PubMed  CAS  Google Scholar 

  65. Varrone A, Fujita M, Verhoef N, Zoghbi S, Baldwin R, Seibyl J, et al. Test-retest reproducibility of extrastriatal dopamine D2 receptor imaging with [I-123]epidepride SPECT in humans.J Nucl Med, in press.

  66. Fujita M, Verhoeff N, Varrone A, Zoghbi S, Baldwin R, Jatlow P, et al. Imaging of extrastriatal D2 receptor occupancy by endogenous dopamine in healthy humans.Eur J Pharmacol, in press.

  67. White L, Harvey P, Opler L, Lindenmayer J. Empirical assessment of the factorial structure of clinical symptoms in schizophrenia. A multisite, multimodel evaluation of the factorial structure of the Positive and Negative Syndrome Scale. The PANSS Study Group.Psychopathology 30: 263–274, 1997.

    Article  PubMed  CAS  Google Scholar 

  68. Abi-Dargham A, Gil R, Krystal J, Baldwin RM, Seibyl JP, Bowers M, et al. Increased striatal dopamine transmission in schizophrenia: results in a second cohort.Am J Psychiatry 155: 761–767, 1998.

    PubMed  CAS  Google Scholar 

  69. Laruelle M, Abi-Dargham A, Gil R, Innis R. Increased dopamine transmission in schizophrenia: relationship to illness phases.Biol Psychiatry, in press.

  70. Soares J, Innis R. Neurochemical brain imaging investigations of schizophrenia.Biol Psychiatry, in press.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Based on an invited special lecture at the 39th Annual Meeting of the Japanese Society of Nuclear Medicine, Akita, October 1999.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kugaya, A., Fujita, M. & Innis, R.B. Applications of SPECT imaging of dopaminergic neurotransmission in neuropsychiatric disorders. Ann Nucl Med 14, 1–9 (2000). https://doi.org/10.1007/BF02990472

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02990472

Key words

Navigation