Skip to main content
Log in

Biology and clinical impact of human natural killer cells

  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Natural killer (NK) cells, through elaboration of cytokines and cytolytic activity, are critical to host defense against invading organisms and malignant transformation.Two subsets of human NK cells are identified according to surface CD56 expression. CD56dim cells compose the majority of NK cells and function as effectors of natural cytotoxicity and antibody-dependent cellular cytotoxicity, whereas CD56bright cells have immunomodulatory function through secretion of cytokines. For a long time, NK cells have held promise for cancer immunotherapy because, unlike T-lymphocytes, NK cells can lyse tumor cells without tumor-specific antigen recognition.To date, NK cell therapy, largely focused on in vivo expansion and activation with cytokines, has met with only modest success. However, recent understanding of the importance of NK receptors (NKR) for recognition and lysis of tumor cells while normal cells are spared suggests novel therapeutic strategies.The balance of inhibitory and activating signals through surface receptors that recognize major histocompatibility complex class I and class I-like molecules on target cells determines whether NK cells activate killing. Identification of NKR ligands and their level of expression on normal and neoplastic cells has important implications for the rational design of immunotherapy strategies for cancer.We review recent development in the biology and clinical relevance of NK cells in cancer immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Robertson MJ, Ritz J. Biology and clinical relevance of human natural killer cells.Blood. 1990;76:2421–2438.

    CAS  PubMed  Google Scholar 

  2. Trinchieri G. Biology of natural killer cells.Adv Immunol. 1989;47: 187–376.

    Article  CAS  PubMed  Google Scholar 

  3. Lotzova E, Savary CA, Herberman RB. Induction of NK cell activity against fresh human leukemia in culture with interleukin 2.J Immunol. 1987;138:2718–2727.

    CAS  PubMed  Google Scholar 

  4. Oshimi K, Oshimi Y, Akutsu M, et al. Cytotoxicity of interleukin 2- activated lymphocytes for leukemia and lymphoma cells.Blood. 1986;68:938–948.

    CAS  PubMed  Google Scholar 

  5. Allavena P, Damia G, Colombo T, Maggioni D, D’Incalci M, Mantovani A. Lymphokine-activated killer (LAK) and monocytemediated cytotoxicity on tumor cell lines resistant to antitumor agents.Cell Immunol. 1989;120:250–258.

    Article  CAS  PubMed  Google Scholar 

  6. Landay AL, Zarcone D, Grossi CE, Bauer K. Relationship between target cell cycle and susceptibility to natural killer lysis.Cancer Res. 1987;47:2767–2770.

    CAS  PubMed  Google Scholar 

  7. Lanier LL, Le AM, Civin CI, Loken MR, Phillips JH. The relationship of CD16 (Leu-11) and Leu-19 (NKH-1) antigen expression on human peripheral blood NK cells and cytotoxic T lymphocytes.J Immunol. 1986;136:4480–4486.

    CAS  PubMed  Google Scholar 

  8. Cooper MA, Fehniger TA, Turner SC, et al. Human natural killer cells: a unique innate immunoregulatory role for the CD56(bright) subset.Blood. 2001;97:3146–3151.

    Article  CAS  PubMed  Google Scholar 

  9. Andre P, Spertini O, Guia S, et al. Modification of P-selectin glycoprotein ligand-1 with a natural killer cell-restricted sulfated lactosamine creates an alternate ligand for L-selectin.Proc Natl Acad Sci U S A. 2000;97:3400–3405.

    Article  CAS  PubMed  Google Scholar 

  10. Frey M, Packianathan NB, Fehniger TA, et al. Differential expression and function of L-selectin on CD56bright and CD56dim natural killer cell subsets.J Immunol. 1998;161:400–408.

    CAS  PubMed  Google Scholar 

  11. Caligiuri MA, Murray C, Robertson MJ, et al. Selective modulation of human natural killer cells in vivo after prolonged infusion of low dose recombinant interleukin 2.J Clin Invest. 1993;91:123–132.

    Article  CAS  PubMed  Google Scholar 

  12. Caligiuri MA, Zmuidzinas A, Manley TJ, Levine H, Smith KA, Ritz J. Functional consequences of interleukin 2 receptor expression on resting human lymphocytes: identification of a novel natural killer cell subset with high affinity receptors.J Exp Med. 1990;171:1509–1526.

    Article  CAS  PubMed  Google Scholar 

  13. Baume DM, Robertson MJ, Levine H, Manley TJ, Schow PW, Ritz J. Differential responses to interleukin 2 define functionally distinct subsets of human natural killer cells.Eur J Immunol. 1992;22:1–6.

    Article  CAS  PubMed  Google Scholar 

  14. Nagler A, Lanier LL, Cwirla S, Phillips JH. Comparative studies of human FcRIII-positive and negative natural killer cells.J Immunol. 1989;143:3183–3191.

    CAS  PubMed  Google Scholar 

  15. Ellis TM, Fisher RI. Functional heterogeneity of Leu 19“bright”+ and Leu 19“dim”+ lymphokine-activated killer cells.J Immunol. 1989;142:2949–2954.

    CAS  PubMed  Google Scholar 

  16. Robertson MJ, Soiffer RJ,Wolf SF, et al. Response of human natural killer (NK) cells to NK cell stimulatory factor (NKSF): cytolytic activity and proliferation of NK cells are differentially regulated by NKSF.J Exp Med. 1992;175:779–788.

    Article  CAS  PubMed  Google Scholar 

  17. Voss SD, Daley J, Ritz J, Robertson MJ. Participation of the CD94 receptor complex in costimulation of human natural killer cells.J Immunol. 1998;160:1618–1626.

    CAS  PubMed  Google Scholar 

  18. Fehniger TA, Cooper MA, Nuovo GJ, et al. CD56bright natural killer cells are present in human lymph nodes and are activated by T cell derived IL-2: a potential new link between adaptive and innate immunity.Blood. 2003;101:3052–3057.

    Article  CAS  PubMed  Google Scholar 

  19. Shibuya A, Nagayoshi K, Nakamura K, Nakauchi H. Lymphokine requirement for the generation of natural killer cells from CD34+ hematopoietic progenitor cells.Blood. 1995;85:3538–3546.

    CAS  PubMed  Google Scholar 

  20. Lotzova E, Savary CA, Champlin RE. Genesis of human oncolytic natural killer cells from primitive CD34+CD33- bone marrow progenitors.J Immunol. 1993;150:5263–5269.

    CAS  PubMed  Google Scholar 

  21. Schorle H, Holtschke T, Hunig T, Schimpl A, Horak I. Development and function of T cells in mice rendered interleukin-2 deficient by gene targeting.Nature. 1991;352:621–624.

    Article  CAS  PubMed  Google Scholar 

  22. Cao X, Shores EW, Hu-Li J, et al. Defective lymphoid development in mice lacking expression of the common cytokine receptor gamma chain.Immunity. 1995;2:223–238.

    Article  CAS  PubMed  Google Scholar 

  23. DiSanto JP, Muller W, Guy-Grand D, Fischer A, Rajewsky K. Lymphoid development in mice with a targeted deletion of the interleukin 2 receptor gamma chain.Proc Natl Acad Sci U S A. 1995;92: 377–381.

    Article  CAS  PubMed  Google Scholar 

  24. Suzuki H, Duncan GS, Takimoto H, Mak TW. Abnormal development of intestinal intraepithelial lymphocytes and peripheral natural killer cells in mice lacking the IL-2 receptor beta chain.J Exp Med. 1997;185:499–505.

    Article  CAS  PubMed  Google Scholar 

  25. Williams NS, Klem J, Puzanov IJ, et al. Natural killer cell differentiation: insights from knockout and transgenic mouse models and in vitro systems.Immunol Rev. 1998;165:47–61.

    Article  CAS  PubMed  Google Scholar 

  26. Fehniger TA, Caligiuri MA. Interleukin 15: biology and relevance to human disease.Blood. 2001;97:14–22.

    Article  CAS  PubMed  Google Scholar 

  27. Mrozek E, Anderson P, Caligiuri MA. Role of interleukin-15 in the development of human CD56+ natural killer cells from CD34+ hematopoietic progenitor cells.Blood. 1996;87:2632–2640.

    CAS  PubMed  Google Scholar 

  28. Fehniger TA, Cooper MA, Caligiuri MA. Interleukin-2 and interleukin-15: immunotherapy for cancer.Cytokine Growth Factor Rev. 2002;13:169–183.

    Article  CAS  PubMed  Google Scholar 

  29. Yu H, Fehniger TA, Fuchshuber P, et al. Flt3 ligand promotes the generation of a distinct CD34(+) human natural killer cell progenitor that responds to interleukin-15.Blood. 1998;92:3647–3657.

    CAS  PubMed  Google Scholar 

  30. Williams NS, Klem J, Puzanov IJ, Sivakumar PV, Bennett M, Kumar V. Differentiation of NK1.1+,Ly49+ NK cells from flt3+ multipotent marrow progenitor cells.J Immunol. 1999;163:2648–2656.

    CAS  PubMed  Google Scholar 

  31. Fehniger TA, Caligiuri MA. Ontogeny and expansion of human natural killer cells: clinical implications.Int Rev Immunol. 2001;20: 503–534.

    CAS  PubMed  Google Scholar 

  32. Sanchez MJ, Spits H, Lanier LL, Phillips JH. Human natural killer cell committed thymocytes and their relation to the T cell lineage.J Exp Med. 1993;178:1857–1866.

    Article  CAS  PubMed  Google Scholar 

  33. Poggi A, Sargiacomo M, Biassoni R, et al. Extrathymic differentiation of T lymphocytes and natural killer cells from human embryonic liver precursors.Proc Natl Acad Sci U S A. 1993;90:4465–4469.

    Article  CAS  PubMed  Google Scholar 

  34. Storkus WJ, Alexander J, Payne JA, Dawson JR, Cresswell P. Reversal of natural killing susceptibility in target cells expressing transfected class I HLA genes.Proc Natl Acad Sci U S A. 1989;86: 2361–2364.

    Article  CAS  PubMed  Google Scholar 

  35. Shimizu Y, DeMars R. Demonstration by class I gene transfer that reduced susceptibility of human cells to natural killer cellmediated lysis is inversely correlated with HLA class I antigen expression.Eur J Immunol. 1989;19:447–451.

    Article  CAS  PubMed  Google Scholar 

  36. Ljunggren HG, Karre K. In search of the “missing self”: MHC molecules and NK cell recognition.Immunol Today. 1990;11:237–244.

    Article  CAS  PubMed  Google Scholar 

  37. Zijlstra M, Auchincloss H Jr, Loring JM, Chase CM, Russell PS, Jaenisch R. Skin graft rejection by beta 2-microglobulin-deficient mice.J Exp Med. 1992;175:885–893.

    Article  CAS  PubMed  Google Scholar 

  38. Moretta A, Bottino C, Pende D, et al. Identification of four subsets of human CD3-CD16+ natural killer (NK) cells by the expression of clonally distributed functional surface molecules: correlation between subset assignment of NK clones and ability to mediate specific alloantigen recognition.J Exp Med. 1990;172:1589–1598.

    Article  CAS  PubMed  Google Scholar 

  39. Malnati MS, Lusso P, Ciccone E, Moretta A, Moretta L, Long EO. Recognition of virus-infected cells by natural killer cell clones is controlled by polymorphic target cell elements.J Exp Med. 1993;178:961–969.

    Article  CAS  PubMed  Google Scholar 

  40. Lanier LL. Activating and inhibitory NK cell receptors.Adv Exp Med Biol. 1998;452:13–18.

    CAS  PubMed  Google Scholar 

  41. Lopez-Botet M, Bellon T, Llano M, Navarro F, Garcia P, de Miguel M. Paired inhibitory and triggering NK cell receptors for HLA class I molecules.Hum Immunol. 2000;61:7–17.

    Article  CAS  PubMed  Google Scholar 

  42. Moretta A, Bottino C, Vitale M, et al. Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis.Annu Rev Immunol. 2001;19:197–223.

    Article  CAS  PubMed  Google Scholar 

  43. Vilches C, Parham P. KIR: diverse, rapidly evolving receptors of innate and adaptive immunity.Annu Rev Immunol. 2002;20: 217–251.

    Article  CAS  PubMed  Google Scholar 

  44. Middleton D, Curran M, Maxwell L. Natural killer cells and their receptors.Transpl Immunol. 2002;10:147–164.

    Article  CAS  PubMed  Google Scholar 

  45. Mandelboim O, Reyburn HT, Vales-Gomez M, et al. Protection from lysis by natural killer cells of group 1 and 2 specificity is mediated by residue 80 in human histocompatibility leukocyte antigen C alleles and also occurs with empty major histocompatibility complex molecules.J Exp Med. 1996;184:913–922.

    Article  CAS  PubMed  Google Scholar 

  46. Biassoni R, Falco M, Cambiaggi A, et al. Amino acid substitutions can influence the natural killer (NK)-mediated recognition of HLA-C molecules: role of serine-77 and lysine-80 in the target cell protection from lysis mediated by “group 2” or “group 1” NK clones.J Exp Med. 1995;182:605–609.

    Article  CAS  PubMed  Google Scholar 

  47. Winter CC, Gumperz JE, Parham P, Long EO,Wagtmann N. Direct binding and functional transfer of NK cell inhibitory receptors reveal novel patterns of HLA-C allotype recognition.J Immunol. 1998;161:571–577.

    CAS  PubMed  Google Scholar 

  48. Rojo S,Wagtmann N, Long EO. Binding of a soluble p70 killer cell inhibitory receptor to HLA-B*5101: requirement for all three p70 immunoglobulin domains.Eur J Immunol. 1997;27:568–571.

    Article  CAS  PubMed  Google Scholar 

  49. Gumperz JE, Barber LD, Valiante NM, et al. Conserved and variable residues within the Bw4 motif of HLA-B make separable contributions to recognition by the NKB1 killer cell-inhibitory receptor.J Immunol. 1997;158:5237–5241.

    CAS  PubMed  Google Scholar 

  50. Dohring C, Scheidegger D, Samaridis J, Cella M, Colonna M. A human killer inhibitory receptor specific for HLA-A1,2.J Immunol. 1996;156:3098–3101.

    CAS  PubMed  Google Scholar 

  51. Lazetic S, Chang C, Houchins JP, Lanier LL, Phillips JH. Human natural killer cell receptors involved in MHC class I recognition are disulfide-linked heterodimers of CD94 and NKG2 subunits.J Immunol. 1996;157:4741–4745.

    CAS  PubMed  Google Scholar 

  52. Carretero M, Cantoni C, Bellon T, et al. The CD94 and NKG2-A C-type lectins covalently assemble to form a natural killer cell inhibitory receptor for HLA class I molecules.Eur J Immunol. 1997;27:563–567.

    Article  CAS  PubMed  Google Scholar 

  53. Brooks AG, Posch PE, Scorzelli CJ, Borrego F, Coligan JE. NKG2A complexed with CD94 defines a novel inhibitory natural killer cell receptor.J Exp Med. 1997;185:795–800.

    Article  CAS  PubMed  Google Scholar 

  54. Chang C, Rodriguez A, Carretero M, Lopez-Botet M, Phillips JH, Lanier LL. Molecular characterization of human CD94: a type II membrane glycoprotein related to the C-type lectin superfamily.Eur J Immunol. 1995;25:2433–2437.

    Article  CAS  PubMed  Google Scholar 

  55. Braud VM,Allan DS, O’Callaghan CA, et al. HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C.Nature. 1998;391: 795–799.

    Article  CAS  PubMed  Google Scholar 

  56. Borrego F, Ulbrecht M,Weiss EH, Coligan JE, Brooks AG. Recognition of human histocompatibility leukocyte antigen (HLA)-E complexed with HLA class I signal sequence-derived peptides by CD94/NKG2 confers protection from natural killer cell-mediated lysis.J Exp Med. 1998;187:813–818.

    Article  CAS  PubMed  Google Scholar 

  57. Wilson MJ, Torkar M, Trowsdale J. Genomic organization of a human killer cell inhibitory receptor gene.Tissue Antigens. 1997;49: 574–579.

    Article  CAS  PubMed  Google Scholar 

  58. Shilling HG, Guethlein LA, Cheng NW, et al. Allelic polymorphism synergizes with variable gene content to individualize human KIR genotype.J Immunol. 2002;168:2307–2315.

    CAS  PubMed  Google Scholar 

  59. Sobanov Y, Glienke J, Brostjan C, Lehrach H, Francis F, Hofer E. Linkage of the NKG2 and CD94 receptor genes to D12S77 in the human natural killer gene complex.Immunogenetics. 1999;49: 99–105.

    Article  CAS  PubMed  Google Scholar 

  60. Glienke J, Sobanov Y, Brostjan C, et al. The genomic organization of NKG2C, E, F, and D receptor genes in the human natural killer gene complex.Immunogenetics. 1998;48:163–173.

    Article  CAS  PubMed  Google Scholar 

  61. Shilling HG, McQueen KL, Cheng NW, Shizuru JA, Negrin RS, Parham P. Reconstitution of NK cell receptor repertoire following HLA-matched hematopoietic cell transplantation.Blood. 2003;101:3730–3740.

    Article  CAS  PubMed  Google Scholar 

  62. Vales-Gomez M, Reyburn HT, Mandelboim M, Strominger JL. Kinetics of interaction of HLA-C ligands with natural killer cell inhibitory receptors.Immunity. 1998;9:337–344.

    Article  CAS  PubMed  Google Scholar 

  63. Vales-Gomez M, Reyburn HT, Erskine RA, Lopez-Botet M, Strominger JL. Kinetics and peptide dependency of the binding of the inhibitory NK receptor CD94/NKG2-A and the activating receptor CD94/NKG2-C to HLA-E.EMBO J. 1999;18:4250–4260.

    Article  CAS  PubMed  Google Scholar 

  64. Valiante NM, Uhrberg M, Shilling HG, et al. Functionally and structurally distinct NK cell receptor repertoires in the peripheral blood of two human donors.Immunity. 1997;7:739–751.

    Article  CAS  PubMed  Google Scholar 

  65. Uhrberg M,Valiante NM, Shum BP, et al. Human diversity in killer cell inhibitory receptor genes.Immunity. 1997;7:753–763.

    Article  CAS  PubMed  Google Scholar 

  66. Biassoni R, Cantoni C, Pende D, et al. Human natural killer cell receptors and co-receptors.Immunol Rev. 2001;181:203–214.

    Article  CAS  PubMed  Google Scholar 

  67. Bauer S, Groh V,Wu J, et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA.Science. 1999;285: 727–729.

    Article  CAS  PubMed  Google Scholar 

  68. Pessino A, Sivori S, Bottino C, et al. Molecular cloning of NKp46: a novel member of the immunoglobulin superfamily involved in triggering of natural cytotoxicity.J Exp Med. 1998;188:953–960.

    Article  CAS  PubMed  Google Scholar 

  69. Pende D, Parolini S, Pessino A, et al. Identification and molecular characterization of NKp30, a novel triggering receptor involved in natural cytotoxicity mediated by human natural killer cells.J Exp Med. 1999;190:1505–1516.

    Article  CAS  PubMed  Google Scholar 

  70. Cantoni C, Bottino C,Vitale M, et al. NKp44, a triggering receptor involved in tumor cell lysis by activated human natural killer cells, is a novel member of the immunoglobulin superfamily.J Exp Med. 1999;189:787–796.

    Article  CAS  PubMed  Google Scholar 

  71. Sivori S, Vitale M, Morelli L, et al. p46, a novel natural killer cellspecific surface molecule that mediates cell activation.J Exp Med. 1997;186:1129–1136.

    Article  CAS  PubMed  Google Scholar 

  72. Vitale M, Bottino C, Sivori S, et al. NKp44, a novel triggering surface molecule specifically expressed by activated natural killer cells, is involved in non-major histocompatibility complexrestricted tumor cell lysis.J Exp Med. 1998;187:2065–2072.

    Article  CAS  PubMed  Google Scholar 

  73. Pende D, Cantoni C, Rivera P, et al. Role of NKG2D in tumor cell lysis mediated by human NK cells: cooperation with natural cytotoxicity receptors and capability of recognizing tumors of nonepithelial origin.Eur J Immunol. 2001;31:1076–1086.

    Article  CAS  PubMed  Google Scholar 

  74. Arnon TI, Lev M, Katz G, Chernobrov Y, Porgador A, Mandelboim O. Recognition of viral hemagglutinins by NKp44 but not by NKp30.Eur J Immunol. 2001;31:2680–2689.

    Article  CAS  PubMed  Google Scholar 

  75. Mandelboim O, Lieberman N, Lev M, et al. Recognition of haemagglutinins on virus-infected cells by NKp46 activates lysis by human NK cells.Nature. 2001;409:1055–1060.

    Article  CAS  PubMed  Google Scholar 

  76. Wu J, Song Y, Bakker AB, et al. An activating immunoreceptor complex formed by NKG2D and DAP10.Science. 1999;285: 730–732.

    Article  CAS  PubMed  Google Scholar 

  77. Bahram S. MIC genes: from genetics to biology.Adv Immunol. 2000;76:1–60.

    Article  CAS  PubMed  Google Scholar 

  78. Sutherland CL, Chalupny NJ, Cosman D. The UL16-binding proteins, a novel family of MHC class I-related ligands for NKG2D, activate natural killer cell functions.Immunol Rev. 2001;181: 185–192.

    Article  CAS  PubMed  Google Scholar 

  79. Groh V, Rhinehart R, Randolph-Habecker J, Topp MS, Riddell SR, Spies T. Costimulation of CD8alphabeta T cells by NKG2D via engagement by MIC induced on virus-infected cells.Nat Immunol. 2001;2:255–260.

    Article  CAS  PubMed  Google Scholar 

  80. Farag SS, George SL, Lee EJ, et al. Postremission therapy with lowdose interleukin 2 with or without intermediate pulse dose interleukin 2 therapy is well tolerated in elderly patients with acute myeloid leukemia: Cancer and Leukemia Group B study 9420.Clin Cancer Res. 2002;8:2812–2819.

    CAS  PubMed  Google Scholar 

  81. Cosman D, Mullberg J, Sutherland CL, et al. ULBPs, novel MHC class I-related molecules, bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity through the NKG2D receptor.Immunity. 2001;14:123–133.

    Article  CAS  PubMed  Google Scholar 

  82. Cerwenka A, Baron JL, Lanier LL. Ectopic expression of retinoic acid early inducible-1 gene (RAE-1) permits natural killer cellmediated rejection of a MHC class I-bearing tumor in vivo.Proc Natl Acad Sci U S A. 2001;98:11521–11526.

    Article  CAS  PubMed  Google Scholar 

  83. Rosenberg SA, Lotze MT, Muul LM, et al. Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer.N Engl J Med. 1985;313:1485–1492.

    Article  CAS  PubMed  Google Scholar 

  84. Kimura H, Yamaguchi Y. A phase III randomized study of interleukin- 2 lymphokine-activated killer cell immunotherapy combined with chemotherapy or radiotherapy after curative or noncurative resection of primary lung carcinoma.Cancer. 1997;80:42–49.

    Article  CAS  PubMed  Google Scholar 

  85. Law TM, Motzer RJ, Mazumdar M, et al. Phase III randomized trial of interleukin-2 with or without lymphokine-activated killer cells in the treatment of patients with advanced renal cell carcinoma.Cancer. 1995;76:824–832.

    Article  CAS  PubMed  Google Scholar 

  86. Caligiuri MA, Murray C, Soiffer RJ, et al. Extended continuous infusion low-dose recombinant interleukin-2 in advanced cancer: prolonged immunomodulation without significant toxicity.J Clin Oncol. 1991;9:2110–2119.

    CAS  PubMed  Google Scholar 

  87. Bernstein ZP, Porter MM, Gould M, et al. Prolonged administration of low-dose interleukin-2 in human immunodeficiency virus-associated malignancy results in selective expansion of innate immune effectors without significant clinical toxicity.Blood. 1995;86:3287–3294.

    CAS  PubMed  Google Scholar 

  88. Bernstein ZP, Khatri V, Poiesz B, et al. Phase I/II study of daily subcutaneous (sc) low dose interleukin-2 (IL-2) in AIDS-associated lymphomas (AIDS-NHL).Blood. 1998;92:625a.

    Google Scholar 

  89. Meropol NJ, Barresi GM, Fehniger TA, Hitt J, Franklin M, Caligiuri MA. Evaluation of natural killer cell expansion and activation in vivo with daily subcutaneous low-dose interleukin-2 plus periodic intermediate-dose pulsing.Cancer Immunol Immunother. 1998;46:318–326.

    Article  CAS  PubMed  Google Scholar 

  90. Fehniger TA, Bluman EM, Porter MM, et al. Potential mechanisms of human natural killer cell expansion in vivo during low-dose IL-2 therapy.J Clin Invest. 2000;106:117–124.

    Article  CAS  PubMed  Google Scholar 

  91. Atkins MB, Lotze MT, Dutcher JP, et al. High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993.J Clin Oncol. 1999;17:2105–2116.

    CAS  PubMed  Google Scholar 

  92. Fisher RI, Rosenberg SA, Fyfe G. Long-term survival update for high-dose recombinant interleukin-2 in patients with renal cell carcinoma.Cancer J Sci Am. 2000;6:S55-S57.

    PubMed  Google Scholar 

  93. Bauer M, Reaman GH, Hank JA, et al. A phase II trial of human recombinant interleukin-2 administered as a 4-day continuous infusion for children with refractory neuroblastoma, non-Hodgkin’s lymphoma, sarcoma, renal cell carcinoma, and malignant melanoma: a Children’s Cancer Group study.Cancer. 1995;75:2959–2965.

    Article  CAS  PubMed  Google Scholar 

  94. Meloni G, Vignetti M, Pogliani E, et al. Interleukin-2 therapy in relapsed acute myelogenous leukemia.Cancer J Sci Am. 1997;3: S43-S47.

    PubMed  Google Scholar 

  95. Lim SH, Newland AC, Kelsey S, et al. Continuous intravenous infusion of high-dose recombinant interleukin-2 for acute myeloid leukaemia: a phase II study.Cancer Immunol Immunother. 1992;34: 337–342.

    Article  CAS  PubMed  Google Scholar 

  96. Cortes JE, Kantarjian HM, O’Brien S, et al. A pilot study of interleukin-2 for adult patients with acute myelogenous leukemia in first complete remission.Cancer. 1999;85:1506–1513.

    Article  CAS  PubMed  Google Scholar 

  97. Itescu S, Artrip JH, Kwiatkowski PA, et al. Lysis of pig endothelium by IL-2 activated human natural killer cells is inhibited by swine and human major histocompatibility complex (MHC) class I gene products.Ann Transplant. 1997;2:14–20.

    CAS  PubMed  Google Scholar 

  98. Wetzler M, Baer MR, Stewart SJ, et al. HLA class I antigen cell surface expression is preserved on acute myeloid leukemia blasts at diagnosis and at relapse.Leukemia. 2001;15:128–133.

    Article  CAS  PubMed  Google Scholar 

  99. Frohn C, Hoppner M, Schlenke P, Kirchner H, Koritke P, Luhm J. Anti-myeloma activity of natural killer lymphocytes.Br J Haematol. 2002;119:660–664.

    Article  CAS  PubMed  Google Scholar 

  100. Igarashi T, Srinivasan R,Wynberg J, et al. Generation of alloreactive NK cells with selective cytotoxicity to melanoma and renal cell carcinoma based on KIR-ligand incompatibility.Blood. 2002;100:73a.

    Google Scholar 

  101. Koh CY, Blazar BR, George T, et al. Augmentation of antitumor effects by NK cell inhibitory receptor blockade in vitro and in vivo.Blood. 2001;97:3132–3137.

    Article  CAS  PubMed  Google Scholar 

  102. Clynes RA, Towers TL, Presta LG, Ravetch JV. Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets.Nat Med. 2000;6:443–446.

    Article  CAS  PubMed  Google Scholar 

  103. Kono K, Takahashi A, Ichihara F, Sugai H, Fujii H, Matsumoto Y. Impaired antibody-dependent cellular cytotoxicity mediated by Herceptin in patients with gastric cancer.Cancer Res. 2002;62: 5813–5817.

    CAS  PubMed  Google Scholar 

  104. Costello RT, Sivori S, Marcenaro E, et al. Defective expression and function of natural killer cell-triggering receptors in patients with acute myeloid leukemia.Blood. 2002;99:3661–3667.

    Article  CAS  PubMed  Google Scholar 

  105. Dabholkar M,Tatake R, Amin K, Advani S, Gangal S. Modulation of natural killer and antibody-dependent cellular cytotoxicity by interferon and interleukin-2 in chronic myeloid leukemia patients in remission.Oncology. 1989;46:123–127.

    Article  CAS  PubMed  Google Scholar 

  106. Hank JA, Robinson RR, Surfus J, et al. Augmentation of antibody dependent cell mediated cytotoxicity following in vivo therapy with recombinant interleukin 2.Cancer Res. 1990;50:5234–5239.

    CAS  PubMed  Google Scholar 

  107. Masucci G, Ragnhammar P, Wersall P, Mellstedt H. Granulocytemonocyte colony-stimulating-factor augments the interleukin-2- induced cytotoxic activity of human lymphocytes in the absence and presence of mouse or chimeric monoclonal antibodies (mAb 17-1A).Cancer Immunol Immunother. 1990;31:231–235.

    Article  CAS  PubMed  Google Scholar 

  108. Carson WE, Parihar R, Lindemann MJ, et al. Interleukin-2 enhances the natural killer cell response to Herceptin-coated Her2/neu-positive breast cancer cells.Eur J Immunol. 2001;31: 3016–3025.

    Article  CAS  PubMed  Google Scholar 

  109. Parihar R, Dierksheide J, Hu Y, Carson WE. IL-12 enhances the natural killer cell cytokine response to Ab-coated tumor cells.J Clin Invest. 2002;110:983–992.

    CAS  PubMed  Google Scholar 

  110. Nguyen QH, Roberts RL, Ank BJ, Lin SJ, Thomas EK, Stiehm ER. Interleukin (IL)-15 enhances antibody-dependent cellular cytotoxicity and natural killer activity in neonatal cells.Cell Immunol. 1998;185:83–92.

    Article  CAS  PubMed  Google Scholar 

  111. Friedberg JW, Neuberg D, Gribben JG, et al. Combination immunotherapy with rituximab and interleukin 2 in patients with relapsed or refractory follicular non-Hodgkin’s lymphoma.Br J Haematol. 2002;117:828–834.

    Article  CAS  PubMed  Google Scholar 

  112. Ansell SM, Witzig TE, Kurtin PJ, et al. Phase 1 study of interleukin- 12 in combination with rituximab in patients with B-cell non- Hodgkin lymphoma.Blood. 2002;99:67–74.

    Article  CAS  PubMed  Google Scholar 

  113. Weng W, Levy R. Rituximab-induced antibody-dependent cellular cytotoxicity (ADCC) in follicular non-Hodgkin’s lymphoma.Blood. 2002;100:157a.

    Google Scholar 

  114. Ruggeri L, Capanni M, Casucci M, et al. Role of natural killer cell alloreactivity in HLA-mismatched hematopoietic stem cell transplantation.Blood. 1999;94:333–339.

    CAS  PubMed  Google Scholar 

  115. Ruggeri L, Capanni M, Urbani E, et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants.Science. 2002;295:2097–3100.

    Article  CAS  PubMed  Google Scholar 

  116. Shlomchik WD, Couzens MS, Tang CB, et al. Prevention of graft versus host disease by inactivation of host antigen-presenting cells.Science. 1999;285:412–415.

    Article  CAS  PubMed  Google Scholar 

  117. Davies SM, Ruggeri L, DeFor T, et al. Evaluation of KIR ligand incompatibility in mismatched unrelated donor hematopoietic transplants: killer immunoglobulin-like receptor.Blood. 2002;100: 3825–3827.

    Article  CAS  PubMed  Google Scholar 

  118. Schaffer M, Alderner-Cannava A, Remberger M, Ringden O, Olerup O. Matching for the HLA-Cw KIR ligand motif and DPA1 are associated with increased survival in unrelated stem cell transplantation.Eur J Immunogenet. 2001;28:208.

    Google Scholar 

  119. Geibel S, Locatelli F, Maccario R, et al. KIR ligand incompatibility is associated with prolonged survival and lower transplant-related mortality in URD-HSCT recipients.Blood. 2002;100:640a.

    Article  Google Scholar 

  120. Rajagopalan S, Long EO. A human histocompatibility leukocyte antigen (HLA)-G-specific receptor expressed on all natural killer cells.J Exp Med. 1999;189:1093–1100.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sherif S. Farag.

About this article

Cite this article

Farag, S.S., VanDeusen, J.B., Fehniger, T.A. et al. Biology and clinical impact of human natural killer cells. Int J Hematol 78, 7–17 (2003). https://doi.org/10.1007/BF02983234

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02983234

Key words

Navigation