Skip to main content
Log in

Isolation of a Natural Antioxidant, Dehydrozingerone from Zingiber officinale and Synthesis of Its Analogues for Recognition of Effective Antioxidant and Antityrosinase Agents

  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

In the present study, the antioxidative and inhibitory activity of Zingiber officinale Rosc. rhizomes-derived materials (on mushroom tyrosinase) were evaluated. The bioactive components of Z. officinale rhizomes were characterized by spectroscopic analysis as zingerone and dehydrozingerone, which exhibited potent antioxidant and tyrosinase inhibition activities. A series of substituted dehydrozingerones [(E)-4-phenyl-3-buten-2-ones] were prepared in admirable yields by the reaction of appropriate benzaldehydes with acetone and the products were evaluated in terms of variation in the dehydrozingerone structure. The synthetic analogues were examined for their antioxidant and antityrosinase activities to probe the most potent analogue. Compound 26 inhibited Fe2+-induced lipid peroxidation in rat brain homogenate with an IC50 = 6.3±0.4 μM. In the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical quencher assay, compounds 2, 7, 17, 26, 28, and 29 showed radical scavenging activity equal to or higher than those of the standard antioxidants, like a-tocopherol and ascorbic acid. Compound 27 displayed superior inhibition of tyrosinase activity relative to other examined analogues. Compounds 2, 17, and 26 exhibited non-competitive inhibition against oxidation of 3,4-dihydroxyphenylalanine (L-DOPA). From the present study, it was observed that both number and position of hydroxyl groups on aromatic ring and a double bond between C-3 and C-4 played a critical role in exerting the antioxidant and antityrosinase activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson, S. O., Sclerotization and tanning in cuticle. In Comparative Insect Physiology, Biochemistry, and Pharmacology, Vol. 3. Kerkut, G. A., Gilbert, L. I. (Eds.). Pergamon Press, Oxford, pp. 59–74, (1985).

    Google Scholar 

  • Bernard, P. and Berthon, J. Y., Resveratrol: an original mechanism on tyrosinase inhibition.Int. J. Cosmet. Sci., 22, 219–226(2000).

    Article  PubMed  CAS  Google Scholar 

  • Braughler, J. M., Chase, R. L., and Pregenzer, J. F., Oxidation of ferrous iron during peroxidation of lipid substrates.Biochim. Biophys. Acta, 921,457–4644 (1987).

    PubMed  CAS  Google Scholar 

  • Braughler, J. M., Pregenzer, J. F., Chase, R. L., Duncan, L. A., Jacobsen, E. J., and McCall, J. M., Novel 21-amino steroids as potent inhibitors of iron-dependent lipid peroxidation.J. Biol. Chem., 262, 10438–10440 (1987).

    PubMed  CAS  Google Scholar 

  • Braughler, J. M., Philip, S., Barton, R. L., Chase, J. F., Pregenzer, E. J., Jacobsen, F. J., Van Doornik, J. M. T., Donald, E. A., and Gordon, L. B., Novel membrane localized iron chelators as inhibitors of iron-dependent lipid peroxidation.Biochem. Pharmacol., 37, 3853–3860 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Connell, D. W. and Sutherland, M. D., A re-examination of gingerol, shogaol, and zingerone, the pungent principles of ginger(Zingiber officinale Roscoe).Aust J. Chem., 22, 1033–1043(1969).

    CAS  Google Scholar 

  • CoSeteng, M. Y., and Lee, C. Y., Changes in apple poly-phenoloxidase and polyphenol concentrations in relation to degree of browning.J. Food Sci., 52, 985–989 (1987).

    Article  CAS  Google Scholar 

  • De Bemardi, M., Vidari, G., and Vita-Finzi, P., Dehydrozingerone from Aframomum giganteum.Phytochemistry, 15, 1785–1786(1976).

    Google Scholar 

  • Denniff, P. and Whiting, D. A., Synthesis of (±)-[6]-gingerol (pungent principle of ginger) and relatives via directed aldol reactions. J. Chem. Soc, Chem. Commun., 712-713 (1976).

  • Fridovich, I., The biology of oxygen radicals.Science, 201, 875–880(1978).

    Article  PubMed  CAS  Google Scholar 

  • Gutteridge, J. M. C., Richmond, R., and Halliwell, B., Inhibition of the iron-catalysed formation of hydroxyl radicals from Superoxide and of lipid peroxidation by desferrioxamine.Biochem. J., 184, 469–472 (1979).

    PubMed  CAS  Google Scholar 

  • Halliwell, B., Murcia, M. A., Chirico, S., and Aruoma, O. I., Free radicals and antioxidants in food andin vivo: what they do and how they work.Crit. Rev. Food Sci. Nutr., 35, 7–20 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Huang, Y. C., Wu, B. N., Yeh, J. L., Chen, S. J., Liang, J. C., Lo, Y. C., and Chen, I. J., A new aspect of view in synthesizing new type β-adrenoceptor blockers with ancillary antioxidant activities.Bioorg. Med. Chem., 9, 1739–1746 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Kitagawa, S., Fujisawa, H., and Sakurai, H., Scavenging effects of dihydric and polyhydric phenols on Superoxide anion radicals, studied by electron spin resonance spectrometry.Chem. Pharm. Bull., 40, 304–307 (1992).

    CAS  Google Scholar 

  • Ko, F. N., Liao, C. H., Kuo, Y. H., and Lin, Y. L., Antioxidant properties of demethyldiisoeugenol.Biochim. Biophys. Acta, 1258, 145–152(1995).

    PubMed  Google Scholar 

  • Laranjinha, J., Almeida, L., and Madeira, V., Reactivity of dietary phenolic acids with peroxyl radicals: antioxidant activity upon low density lipoprotein peroxidation.Biochem. Pharmacol., 48, 487–494(1994).

    Article  PubMed  CAS  Google Scholar 

  • Lee, C. Y., Kagan, V., Jaworski, A. W., and Brown, S., Enzymatic browning in relation to phenolic compounds and polyphenoloxidase activity among various peach cultivars.J. Agric. Food Chem., 38, 99–101 (1990).

    Article  CAS  Google Scholar 

  • Maeda, K. and Fukuda, M.,In vitro effectiveness of several whitening cosmetic components in human melanocytes.J. Soc. Cosmet. Chem., 42, 361–368 (1991).

    CAS  Google Scholar 

  • Mason, H. S. and Peterson, E. W., Melanoproteins. I. Reactions between enzyme-generated quinones and amino acids.Biochim. Biophys. Acta, 111, 134–146 (1965).

    PubMed  CAS  Google Scholar 

  • Mellors, A. and Tappel, A. L., The inhibition of mitochondrial peroxidation by ubiquinone and ubiquinol.J. Biol. Chem., 241, 4353–4356(1966).

    PubMed  CAS  Google Scholar 

  • Pomerantz, S. H., Separation, purification, and properties of two tyrosinases from Hamster Melanoma.J. Biol. Chem., 238, 2351–2357(1963).

    PubMed  CAS  Google Scholar 

  • Raper, H. S., The aerobic oxidases.Physiol. Rev., 8, 245–282 (1928).

    CAS  Google Scholar 

  • Sala, T. and Sargent, M. V., Depsidone synthesis. Part 14. The total synthesis of psoromic acid: isopropyl ethers as useful phenolic protective groups.J. Chem. Soc. Perkin Trans. I, 2593–2598(1979).

    Article  Google Scholar 

  • Sanchez-Ferrer, A., Rodriguez-Lopez, J. N., Garcia-Canovas, F., and Garcia-Carmona, F., Tyrosinase: A comprehensive review of its mechanism.Biochim. Biophys. Acta, 1247, 1–11 (1995).

    PubMed  Google Scholar 

  • Scott, A. I., Interpretation of the ultraviolet spectra of natural products. Pergamon Press, New York, p. 119, (1964).

    Google Scholar 

  • Shirota, S., Miyazaki, K., Aiyama, R., Ichioka, M., and Yokokura, T., Tyrosinase inhibitors from crude drugs.Biol. Pharm. Bull., 17, 266–269 (1994).

    PubMed  CAS  Google Scholar 

  • Staprans, I., Pan, X. M., Miller, M., and Rapp, J. H., Effect of dietary lipid peroxides on metabolism of serum chylomicrons in rats.Am. J. Physiol., 264, G561-G568 (1993).

    PubMed  CAS  Google Scholar 

  • Terao, J., Karasawa, H., Arai, H., Nagao, A., Suzuki, T., and Takama, K., Peroxyl radical scavenging activity of caffeic acid and its related phenolic compounds in solution.Biosci. Biotech. Biochem., 57, 1204–1205 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amooru G. Damu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuo, PC., Cherng, CY., Jeng, JF. et al. Isolation of a Natural Antioxidant, Dehydrozingerone from Zingiber officinale and Synthesis of Its Analogues for Recognition of Effective Antioxidant and Antityrosinase Agents. Arch Pharm Res 28, 518–528 (2005). https://doi.org/10.1007/BF02977752

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02977752

Key words

Navigation