Skip to main content
Log in

Geometric and transformational properties of Lipschitz domains, Semmes-Kenig-Toro domains, and other classes of finite perimeter domains

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In the first part of this article we give intrinsic characterizations of the classes of Lipschitz and C1 domains. Under some mild, necessary, background hypotheses (of topological and geometric measure theoretic nature), we show that a domain is Lipschitz if and only if it has a continuous transversal vector field. We also show that if the geometric measure theoretic unit normal of the domain is continuous, then the domain in question is of class C1. In the second part of the article, we study the invariance of various classes of domains of locally finite perimeter under bi-Lipschitz and C1 diffeomorphisms of the Euclidean space. In particular, we prove that the class of bounded regular SKT domains (previously called chord-arc domains with vanishing constant, in the literature) is stable under C1 diffeomorphisms. A number of other applications are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, L., Fusco, N., and Pallara, D..Functions of Bounded Variation and Free Discontinuity Problems, Oxford University Press, New York, (2000).

    MATH  Google Scholar 

  2. Axelsson, A. and McIntosh A. Hodge decompositions on weakly Lipschitz domains, inAdvances in Analysis and Geometry, Trends Math. 3–29, Birkhäuser, Basel, (2004).

    Google Scholar 

  3. Calderón, A. P. Boundary value problems for the Laplace equation in Lipschitzian domains, inRecent Progress in Fourier Analysis, Peral, I. and Rubio de Francia, J., Eds., Elsevier/North-Holland, Amsterdam, (1985).

    Google Scholar 

  4. Dahlberg, B. E. J. and Verohota, G. Galerkin methods for the boundary integral equations of elliptic equations in nonsmooth domains, inHarmonic Analysis and Partial Differential Equations, Contemp. Math.107, 39–60. Amer. Math Soc., Providence, RI, (1990).

    Google Scholar 

  5. David, G. and Semmes, S. Singular integrals and rectifiable sets in ℝn: Beyond Lipschitz graphs,Astérisque 193 (1991).

  6. David, G. and Senumes, S. Analysis of and on uniformly rectifiable sets,Math. Surveys Monogr. AMS Series (1993).

  7. Evans, L. C.Partial Differential Equations, American Mathematical Society, Providence, RI, (1998).

    MATH  Google Scholar 

  8. Evans, L. C. and Gariepy, R. F. Measure theory and fine properties of functions,Stud. Adv. Math., CRC Press, Boca Raton, FL, (1992).

    MATH  Google Scholar 

  9. Federer, H.Geometric Measure Theory, reprint of the 1969 edition, Springer-Verlag, (1996).

  10. Grisvard, P. Elliptic Problems in Nonsmooth Domains,Monogr. Stud. Math. 24, Pitman Boston, MA, (1985).

  11. Hofmann, S., Mitrea, M., and Taylor, M. Singular integrals and elliptic boundary problems on regular Semmes-Kenig-Toro domains, preprint, (2007).

  12. Jerison, D. and Kenig, C. The Dirichlet problem in non-smooth domains,Ann. of Math. 113, 367–382, (1981).

    Article  MathSciNet  Google Scholar 

  13. Kenig, C. E. Harmonic analysis techniques for second order elliptic boundary value problems,CBMS Reg. Conf. Ser. Math. 83, AMS, Providence, RI, (1994).

    MATH  Google Scholar 

  14. Kenig, C. E. and Toro, T. Harmonic measure on locally flat domains.Duke Math. J. 87(3), 509–551, (1997).

    Article  MATH  MathSciNet  Google Scholar 

  15. Kenig, C. E. and Toro, T. Free boundary regularity for harmonic measures and Poisson kernels.Ann. of Math. 150(2), 369–454, (1999).

    Article  MATH  MathSciNet  Google Scholar 

  16. Kenig, C. E. and Toro, T. Poisson kernel characterization of Reifenberg flat chord arc domains,Ann. Sci. École Norm. Sup. (4) 36(3), 323–401, (2003).

    MATH  MathSciNet  Google Scholar 

  17. Maz’ya, V. G.Sobolev Spaces, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, (1985).

    Google Scholar 

  18. Mitrea, D., Mitrea, M., and Taylor, M. Layer potentials, the Hodge Laplacian, and boundary problems in nonsmooth Riemannian manifolds,Memoirs AMS #713, (2001).

  19. Mitrea, M. and Taylor, M. Boundary layer methods for Lipschitz domains in Riemannian manifolds,J. Funct. Anal. 163, 181–251, (1999).

    Article  MATH  MathSciNet  Google Scholar 

  20. Morrey, Ch. B.Multiple Integrals in the Calculus of Variations, Springer-Verlag, New York, (1966).

    MATH  Google Scholar 

  21. Pipher, J. and Verchota, G. Dilation invariant estimates and the boundary Garding inequality for higher order elliptic operatorsAnn. of Math. (2) 142(1), 1–38, (1995).

    Article  MATH  MathSciNet  Google Scholar 

  22. Rademacher, H. Über partielle und totale Differenzierbarkeit von Funktionen mehrerer Variablen und über die Transformation der Doppelintegrals,Math., Ann. 79, 340–359, (1918).

    Article  MathSciNet  Google Scholar 

  23. Semmes, S. Chord-arc surfaces with small constant,I,Adv. Math. 85(2), 198–223, (1991).

    Article  MATH  MathSciNet  Google Scholar 

  24. Simon, L.Lectures on Geometric Measure Theory, Australian National University, Centre for Mathematical Analysis, Canberra, (1983).

    MATH  Google Scholar 

  25. Verchota, G. Layer potentials and regularity for the Dirichlet problem for Laplace’s equation in Lipschitz domains,J. Funct. Anal. 59(3), 572–611, (1984).

    Article  MATH  MathSciNet  Google Scholar 

  26. Wells, J. H. and Williams, L. R.Embeddings and Extensions in Analysis Springer-Verlag, (1975).

  27. Ziemer, W..Weakly Differentiable Functions. Springer-Verlag, New York, (1989).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steve Hofmann.

Additional information

Communicated by Steven G. Krantz

Acknowledgements and Notes. The work of the authors was supported in part by NSF grants DMS-0245401, DMS-0653180, DMS-FRG0456306, and DMS-0456861.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hofmann, S., Mitrea, M. & Taylor, M. Geometric and transformational properties of Lipschitz domains, Semmes-Kenig-Toro domains, and other classes of finite perimeter domains. J Geom Anal 17, 593–647 (2007). https://doi.org/10.1007/BF02937431

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02937431

Math Subject Classifications

Key Words and Phrases

Navigation