Skip to main content
Log in

Polyelectrolyte multilayer microcapsules: Self-assembly and toward biomedical applications

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Over the past few years, many studies have been performed involving the application of the Layer-by-Layer (LbL) deposition of oppositely charged polyelectrolytes onto charged colloidal particles, followed by the dissolution of the templates, ultimately resulting in polyelectrolyte multilayer microcapsules. The ease of preparation of polyelectrolyte multilayer microcapsules afforded by the LbL self-assembly technique, as well as the advantages of accurate control over size, composition, and the thickness of the multilayer shell make these capsules very promising for a number of applications in materials and biomedical science. In this review, we describe the assembly and stimuli-responsive properties (“smart” capsules) of polyelectrolyte multilayer microcapsules, and also discuss the potential of this technique in regard to biomedical applications. In addition, we illustrate two measurement techniques for determining the mechanical properties of polyelectrolyte multilayer microcapsules—(i) osmotic swelling and (ii) AFM compression experiments. These capsules are believed to have great potential for future applications, including biosensors, bioreactors, and carriers for targeted drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sukhorukov, G. B., A. A. Antipov, A. Voigt, E. Donath, and H. Möhwald (2001) pH-controlled macromolecule encapsulation in and release from polyelectrolyte multilayer nanocapsules.Macromol. Rapid Commun. 22: 44–46.

    Article  CAS  Google Scholar 

  2. Caruso, F., R. A. Caruso, and H. Möhwald (1998) Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating.Science 282: 1111–1114.

    Article  CAS  Google Scholar 

  3. Vinogradova, O. I., D. Andrienko, V. V. Lulevich, S. Nordschild, and G. B. Sukhorukov (2004) Young's modulus of polyelectrolyte multilayers from microcapsule swelling.Macromolecules 37: 1113–1117.

    Article  CAS  Google Scholar 

  4. Donath, E., G. B. Sukhorukov, F. Caruso, S. A. Davis, and H. Möhwald (1998) Novel hollow polymer shells by colloid-templated assembly of polyelectrolytes.Angew. Chem. Int. Ed. 37: 2201–2205.

    Article  Google Scholar 

  5. Sukhorukov, G. B., E. Donath, H. Lichtenfeld, E. Knippel, M. Knippel, A. Budde, and H. Möhwald (1998) Layer-by-layer assembly of polyelectrolytes on colloidal particles.Colloids Surf. A 137: 253–266.

    Article  Google Scholar 

  6. Lulevich, V. V., I. L. Radtchenko, G. B. Sukhorukov, and O. I. Vinogradova (2003) Mechanical properties of polyelectrolyte microcapsules filled with a neural polymer.Macromolecules 36: 2832–2837.

    Article  CAS  Google Scholar 

  7. Johnston, A. P. R., C. Cortez, A. S. Angelatos, and F. Caruso (2006) Layer-by-layer engineered capsules and their applications.Curr. Opin. Colloid Interface Sci. 11: 203–209.

    Article  CAS  Google Scholar 

  8. Radtchenko, I. L., G. B. Sukhorukov, and H. Möhwald (2002) Incorporation of macromolecules into polyelectrolyte micro- and nanocapsules via surface controlled precipitation on colloidal particles.Colloids Surf. A 202: 127–133.

    Article  CAS  Google Scholar 

  9. Lvov, Y., A. A. Antipov, A. Mamedov, H. Möhwald, and G. B. Sukhorukov (2001) Urease encapsulation in nanoorganized microshells.Nano Lett. 1: 125–128.

    Article  CAS  Google Scholar 

  10. Decher, G. (2003) Polyelectrolyte Multilayers, an Overview. pp. 1–46. In: G. Decher J. B. Schlenoff (eds.).Multilayer Thin Films. Wiley-VCH, New York, NY, USA.

    Google Scholar 

  11. Decher, G. (1997) Fuzzy nanoassemblies: Toward layered polymeric multicomposites.Science 277: 1232–1237.

    Article  CAS  Google Scholar 

  12. Dubas, S. T. and J. B. Schlenoff (1999) Factors controlling the growth of polyelectrolyte multilayers.Macromolecules 32: 8153–8160.

    Article  CAS  Google Scholar 

  13. Yoo, D., S. S. Shiratori, and M. F. Rubner (1998) Controlling bilayer composition and surface wettability of sequentially adsorbed multilayers of weak polyelectrolytes.Macromolecules 31: 4309–4318.

    Article  CAS  Google Scholar 

  14. Cho, J., J. F. Quinn, and F. Caruso (2004) Fabrication of polyelectrolyte multilayer films comprising nanoblended layers.J. Am. Chem. Soc. 126: 2270–2271.

    Article  CAS  Google Scholar 

  15. Vinogradova, O. I. (2004) Mechanical properties of polyelectrolyte multilayer microcapsules.J. Phys. Condens. Matter 16: R1105-R1134.

    Article  CAS  Google Scholar 

  16. Vinogradova, O. I., O. V. Lebedeva, and B. S. Kim (2006) Mechanical behavior and characterization of microcapsules.Annu. Rev. Mater. Res. 36: 143–178.

    Article  CAS  Google Scholar 

  17. Pastoriza-Santos, I., B. Scholer, and F. Caruso (2001) Core-shell colloids and hollow polyelectrolyte capsules based on diazoresins.Adv. Funct. Mater. 11: 122–128.

    Article  CAS  Google Scholar 

  18. Dubreuil, F., N. Elsner, and A. Fery (2003) Elastic properties of polyelectrolyte capsules studied by atomic-force microscopy and RICM.Eur. Phys. J. E 12: 215–221.

    Article  CAS  Google Scholar 

  19. Bäumler, H., G. Artmann, A. Voigt, R. Mitlöhner, B. Neu, and H. Kiesewetter (2000) Plastic behaviour of polyelectrolyte microcapsules derived from colloid templates.J. Microencapsul. 17: 651–655.

    Article  Google Scholar 

  20. Shenoy, D. B., A. A. Antipov, G. B. Sukhorukov, and H. Möhwald (2003) Layer-by-layer engineering of biocompatible, decomposable core-shell structures.Biomacromolecules 4: 265–272.

    Article  CAS  Google Scholar 

  21. Antipov, A. A., G. B. Sukhorukov, S. Leporatti, I. L. Radtchenko, E. Donath, and H. Möhwald (2002) Polyelectrolyte multilayer capsule permeability control.Colloids Surf. A 198: 535–541.

    Article  Google Scholar 

  22. Peyratout, C. S. and L. Dähne (2004) Tailor-made polyelectrolyte microcapsules: from multilayers to smart containers.Angew. Chem. Int. Ed. 43: 3762–3783.

    Article  CAS  Google Scholar 

  23. Schneider, G. and G. Decher (2004) From functional core/shell nanoparticles prepared via layer-by-layer deposition to empty nanospheres.Nano Lett. 4: 1833–1839.

    Article  CAS  Google Scholar 

  24. Vinogradova, O. I., O. V. Lebedeva, K. Vasilev, H. Gong, J. Garcia-Turiel, and B. S. Kim (2005) Multilayer DNA/poly(allylamine hydrochloride) microcapsules: assembly and mechanical properties.Biomacromolecules 6: 1495–1502.

    Article  CAS  Google Scholar 

  25. Kim, B. S., O. V. Lebedeva, D. H. Kim, A. M. Caminade, J. P. Majoral, W. Knoll, and O. I. Vinogradova (2005) Assembly and mechanical properties of phosphorus dendrimer/polyelectrolyte multilayer microcapsules.Langmuir 21: 7200–7206.

    Article  CAS  Google Scholar 

  26. Caruso, F., K. Niikura, D. N. Furlong, and Y. Okahata (1997) 1. Ultrathin multilayer polyelectrolyte films on gold: construction and thickness determination.Langmuir 13: 3422–3426.

    Article  CAS  Google Scholar 

  27. Sukhorukov, G. B., E. Donath, S. Davis, H. Lichtenfeld, F. Caruso, V. I. Popov, and H. Möhwald (1998) Step-wise polyelectrolyte assembly on particle surfaces: a novel approach to colloid design.Polym. Adv. Technol. 9: 759–767.

    Article  CAS  Google Scholar 

  28. Dubreuil, F., D. G. Shchukin, G. B. Shkhorukov, and A. Fery (2004) Polyelectrolyte capsules modified with YF3 nanoparticles: an AFM study.Macromol. Rapid Commun. 25: 1078–1081.

    Article  CAS  Google Scholar 

  29. Dai, Z., A. Voigt, S. Leporatti, E. Donath, L. Dähne, and H. Möhwald (2001) Layer-by-layer self-assembly of polyelectrolyte and low molecular weight species into capsules.Adv. Mater. 13: 1339–1342.

    Article  CAS  Google Scholar 

  30. Khopade, A. J. and F. Caruso (2002) Electrostatically assembled polyelectrolyte/dendrimer multilayer films as ultrathin nanoreservoirs.Nano Lett. 2: 415–418.

    Article  CAS  Google Scholar 

  31. Johnston, A. P. R., E. S. Read, and F. Caruso (2005) DNA multilayer films on planar and colloidal supports: Sequential assembly of like-charged polyelectrolytes.Nano Lett. 5: 953–956.

    Article  CAS  Google Scholar 

  32. Kim, B. S., O. I. Vinogradova (2004) pH-Controlled swelling of polyelectrolyte multilayer microcapsules.J. Phys. Chem. B 108: 8161–8165.

    Article  CAS  Google Scholar 

  33. Kim, B. S., O. V. Lebedeva, K. Koynov, H. Gong, G. Glasser, I. Lieberwith, and O. I. Vinogradova (2005) Effect of organic solvent on the permeability and stiffness of polyelectrolyte multilayer microcapsules.Macromolecules 38: 5214–5222.

    Article  CAS  Google Scholar 

  34. Dähne, L., S. Leporatti, E. Donath, and H. Möhwald (2001) Fabrication of micro reaction cages with tailored properties.J. Am. Chem. Soc. 123: 5431–5436.

    Article  CAS  Google Scholar 

  35. Kim, B. S., T. H. Fan, O. V. Lebedeva, and O. I. Vinogradova (2005) Superswollen ultrathin polyelectrolyte microcapsules.Macromolecules 38: 8066–8070.

    Article  CAS  Google Scholar 

  36. Sukhorukov, G. B., M. Brumen, E. Donath, and H. Möhwald (1999) Hollow polyelectrolyte shells: Exclusion of polymers and donnan equilibrium.J. Phys. Chem. B 103: 6434–6440.

    Article  CAS  Google Scholar 

  37. Sukhorukov, G. B., E. Donath, S. Moya, A. S. Susha, A. Voigt, J. Hartmann, and H. Möhwald (2000) Microencapsulation by means of step-wise adsorption of polyelectrolytes.J. Microencapsul. 17: 177–185.

    Article  CAS  Google Scholar 

  38. Dejugnat, C. and G. B. Sukhorukov (2004) pH-Responsive properties of hollow polyelectrolyte microcapsules templated on various cores.Langmuir 20: 7265–7269.

    Article  CAS  Google Scholar 

  39. Sauer, M., D. Streich, and W. Meier (2001) pH-Sensitive nanocontainers.Adv. Mater. 13: 1649–1651.

    Article  CAS  Google Scholar 

  40. Richert, L., P. Lavalle, E. Payan, X. Z. Shu, G. D. Prestwich, J.-F. Stoltz, P. Schaaf, J.-C. Voegel, and C. Picart (2004) Layer by layer buildup of polysaccharide films: physical chemistry and cellular adhesion aspects.Langmuir 20: 448–458.

    Article  CAS  Google Scholar 

  41. Burke, S. E. and C. J. Barrett (2003) pH-Responsive properties of multilayered poly(L-lysine)/hyaluronic acid surfaces.Biomacromolecules 4: 1773–1783.

    Article  CAS  Google Scholar 

  42. Burke, S. E. and C. J. Barrett (2004) pH-Dependent loading and release behavior of small hydrophilic molecules in weak polyelectrolyte multilayer films.Macromolecules 37: 5375–5384.

    Article  CAS  Google Scholar 

  43. Sukhorukov, G. B., J. Schmitt, and G. Decher (1996) Reversible swelling of polyanion/polycation multilayer films in solutions of different ionic strength.Ber. Bunsen-Ges. Phys. Chem. 100: 948–953.

    CAS  Google Scholar 

  44. Ibarz, G., I. Dähne, E. Donath, and H. Möhwald (2001) Smart micro- and nanocontainers for storage, transport, and release.Adv. Mater. 13: 1324–1327.

    Article  CAS  Google Scholar 

  45. Lebedeva, O. V., B. S. Kim, K. Vasilev, and O. I. Vinogradova (2005) Salt softening of polyelectrolyte multilayer microcapsules.J. Colloid Interface Sci. 284: 455–462.

    Article  CAS  Google Scholar 

  46. Heuvingh, J., M. Zappa, and A. Fery (2005) Salt softening of polyelectrolyte multilayer capsules.Langmuir 21: 3165–3171.

    Article  CAS  Google Scholar 

  47. Glinel, K., G. B. Sukhorukov, H. Möhwald, V. Khrenov, and K. Tauer (2003) Thermosensitive hollow capsules based on thermoresponsive polyelectrolytes.Macromol. Chem. Phys. 204: 1784–1790.

    Article  CAS  Google Scholar 

  48. Lulevich, V. V., I. L. Radtchenko, G. B. Sukhorukov, and O. I. Vinogradova (2003) Deformation properties of nonadhesive polyelectrolyte microcapsules studied with the atomic force microscope.J. Phys. Chem. B 107: 2735–2740.

    Article  CAS  Google Scholar 

  49. Lulevich, V. V., D. Andrienko, and O. I. Vinogradova (2004) Elasticity of polyelectrolyte multilayer microcapsules.J. Chem. Phys. 120: 3822–3826.

    Article  CAS  Google Scholar 

  50. Liao, Q., A. V. Dobrynin, and M. Rubinstein (2003) Molecular dynamies simulations of polyelectrolyte solutions: osmotic coefficient and counterion condensation.Macromolecules 36: 3399–3410.

    Article  CAS  Google Scholar 

  51. Dobrynin, A. V. and M. Rubinstein (2005) Theory of polyelectrolytes in solutions and at surfaces.Prog. Polym. Sci. 30: 1049–1118.

    Article  CAS  Google Scholar 

  52. Stevens, M. J. and K. Kremer (1995) The nature of flexible linear polyelectrolytes in salt free solution: A molecular dynamics study.J. Chem. Phys. 103: 1669–1690.

    Article  CAS  Google Scholar 

  53. Lulevich, V. V. and O. I. Vinogradova (2004) Effect of pH and salt on the stiffness of polyelectrolyte multilayer microcapsules.Langmuir 20: 2874–2878.

    Article  CAS  Google Scholar 

  54. Choi, J. W., Y. S. Nam, and M. Fujihira (2004) Nanoscale fabrication of biomolecular layer and its application to biodevices.Biotechnol. Bioprocess Eng. 9: 76–85.

    Article  CAS  Google Scholar 

  55. Bae, Y. M., B. K. Oh, W. Lee, W. H. Lee, and J. W. Choi (2004) Immunosensor for detection ofYersinia enterocolitica based on imaging ellipsometry.Anal. Chem. 76: 1799–1803.

    Article  CAS  Google Scholar 

  56. Choi, J. W., W. Lee, B. K. Oh, H. J. Lee, and D. B. Lee (2006) Application of complement lq for the site-selective recognition of immune complex in protein chip.Biosens. Bioelectron. 22: 764–767.

    Article  CAS  Google Scholar 

  57. Ahn, J. M., B. C. Kim, and M. B. Gu (2006) Characterization ofgltA::luxCDABE fusion inEscherichia coli as a toxicity biosensor.Biotechnol. Bioprocess Eng. 11: 516–521.

    Article  CAS  Google Scholar 

  58. Mansouri, S. and J. S. Schultz (1984) A miniature optical glucose sensor based on affinity binding.Bio/Technology 2: 885–890.

    Article  CAS  Google Scholar 

  59. Russell, R. J., M. V. Pishko, C. C. Gefrides, M. J. McShane, and G. L. Cote (1999) A fluorescence-based glucose biosensor using concanavalin A and dextran encapsulated in a poly(ethylene glycol) hydrogel.Anal. Chem. 71: 3126–3132.

    Article  CAS  Google Scholar 

  60. Rolinski, O. J., D. J. S. Birch, L. McCartney, and J. C. Pickup (2001) Molecular distribution sensing in a fluorescence resonance energy transfer based affinity assay for glucose.Spectrochim. Acta A 57: 2245–2254.

    Article  CAS  Google Scholar 

  61. Chinnayelka, S. and M. J. McShane (2005) Microcapsule biosensors using competitive binding resonance energy transfer assays based on apoenzymes.Anal. Chem. 77: 5501–5511.

    Article  CAS  Google Scholar 

  62. Shchukin, D. G., I. L. Radtchenko, and G. B. Sukhorukov (2003) Synthesis of nanosized magnetic ferrite particles inside hollow polyelectrolyte capsules.J. Phys. Chem. B 107: 86–90.

    Article  CAS  Google Scholar 

  63. Radtchenko, I. L., M. Giersig, and G. B. Sukhorukov (2002) Inorganic particle synthesis in confined microsized polyelectrolyte capsules.Langmuir 18: 8204–8208.

    Article  CAS  Google Scholar 

  64. Choi, W. S., J. H. Park, H. Y. Koo, J. Y. Kim, B. K. Cho, and D. Y. Kim (2005) “Grafting-from” polymerization inside a polyelectrolyte hollow-capsule microreactor.Angew. Chem. Int. Ed. 44: 1096–1101.

    Article  CAS  Google Scholar 

  65. Ghan, R., T. Shutava, A. Patel, V. T. John, and Y. Lvov (2004) Enzyme-catalyzed polymerization of phenols within polyelectrolyte microcapsules.Macromolecules 37: 4519–4524.

    Article  CAS  Google Scholar 

  66. Shchukin, D. G., I. L. Radtchenko, and G. B. Sukhorukov (2003) Micro-scale hollow polyelectrolyte capsules with nanosized magnetic Fe3O4 inside.Mater. Lett. 57: 1743–1747.

    Article  CAS  Google Scholar 

  67. Zhu, H. and M. J. McShane (2006) Synthesis and functionalization of monodisperse poly(ethylene glycol) hydrogel microspheres within polyelectrolyte multilayer microcapsules.Chem. Commun. 2: 153–155.

    Article  CAS  Google Scholar 

  68. Rabinovich, Y., M. Esayanur, S. Daosukho, H. El-Shall, and S. Khan (2005) Atomic force microscopy measurement of the elastic properties of the kidney epithelial cells.J. Colloid Interface Sci. 285: 125–135.

    Article  CAS  Google Scholar 

  69. Reibetanz, U., C. Claus, E. Typlt, J. Hofmann, and E. Donath (2006) Defoliation and plasmid delivery with layer-by-layer coated colloids.Macromol. Biosci. 6: 153–160.

    Article  CAS  Google Scholar 

  70. Shehukin, D. G., A. A. Patel, G. B. Sukhorukov, and Y. M. Lvov (2004) Nanoassembly of biodegradable microcapsules for DNA encasing.J. Am. Chem. Soc. 126: 3374–3375.

    Article  CAS  Google Scholar 

  71. De Geest, B. G., C. Dejugnat, M. Prevot, G. B. Sukhorukov, J. Demeester, and S. C. De Smedt (2007) Self-rupturing and hollow microcapsules prepared from biopolyelectrolyte-coated microgels.Adv. Funct. Mater. 17: 531–537.

    Article  CAS  Google Scholar 

  72. Krol, S., M. Nolte, A. Diaspro, D. Mazza, R. Magrassi, A. Gliozzi, and A. Fery (2005) Encapsulated living cells on microstructured surfaces.Langmuir 21: 705–709.

    Article  CAS  Google Scholar 

  73. Lee, S. W., W. J. Chang, R. Bashir, and Y. M. Koo (2007) “Bottom-up” approach for implementing nano/microstructure using biological and chemical interactions.Biotechnol. Bioprocess Eng. 12: 185–199.

    Article  CAS  Google Scholar 

  74. Heuberger, R., G. Sukhorukov, J. Vörös, M. Textor, and H. Möhwald (2005) Biofunctional polyelectrolyte multilayers and microcapsules: control of non-specific and bio-specific protein adsorption.Adv. Funct. Mater. 15: 357–366.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong-Woo Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, BS., Choi, JW. Polyelectrolyte multilayer microcapsules: Self-assembly and toward biomedical applications. Biotechnol. Bioprocess Eng. 12, 323–332 (2007). https://doi.org/10.1007/BF02931052

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931052

Keywords

Navigation