Skip to main content
Log in

Determination of reaction kinetics of wheat straw using thermogravimetric analysis

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) have been conducted on straws from four different wheat varieties (Absolvant, Max, Monopol, and Vuka) in an oxidizing atmosphere of 15% oxygen and 85% nitrogen. The thermal degradation of wheat straw was studied from ambient temperature to 700°C using a heating rate of 20°C/min. By applying thermoanalytical techniques to reaction kinetics, the order of reaction, preexponential factor, and energy of activation were determined from thermogravimetric curves. Two distinct reaction zones were observed on the TGA and DTA curves. Because of the two-step nature of the thermal degradation of wheat straw, it was essential to determine the kinetic parameters for each zone separately. The thermal degradation rate of the first zone was significantly higher than that of the second zone for all wheat straw varieties. Lower activation energy and preexponential factors were observed for wheat straws as compared to cellulose owing to the high inorganic material and silica contents of the wheat straw.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. USDA (1989),Agricultural Outlook Yearbook, Economic Research Service.

  2. Ghaly, A. E., Al-Taweel, A. M., and Ergudenler, A. (1989),Proceedings of Seventh Bioenergy R&D Seminar, National Research Council of Canada, Ottawa, Ontario, pp. 297–303.

    Google Scholar 

  3. Peil, J. E. (1980),Proceedings of the Second Canadian Bioenergy R & D Seminar, National Research Council of Canada, Ottawa, Ontario, pp. 11–16.

    Google Scholar 

  4. Colwell, H. T. M. (1983),Technical Report, Energy Analysis and Policy Division, Agriculture Canada, Ottawa, Ontario.

  5. Nemetz, I. (1983),Technical Report, Energy Analysis and Policy Division Agriculture Canada, Ottawa, Ontario.

  6. Ebling, J. M. and Jenkins, B. M. (1985),Transactions of the ASAE 28(3), 898–902.

    Google Scholar 

  7. Ghaly, A. E., Al-Taweel, A. M., Hamdullahpur, F., and Ergudenler, A. (1989),Proceedings of the Seventh Canadian Bioenergy R & D Seminar, National Research Council of Canada, Ottawa, Ontario, pp. 647–654.

    Google Scholar 

  8. Theander, O. (1985),Fundamentals of Thermochemical Biomass Conversion, Overend, R. P., Milne, T. A., and Mudge, L. K., eds., Elsevier Applied Science Publishers, New York, pp. 35–60.

    Google Scholar 

  9. Glasser, W. G. (1985),Fundamentals of Thermochemical Biomass Conversion. Overend, R. P., Milne, T. A., and Mudge, L. K., eds., Elsevier Applied Science Publishers, New York, pp. 61–76.

    Google Scholar 

  10. Shafizadeh, F. (1968),Advances in Carbohydrate Chemistry 23, 419.

    CAS  Google Scholar 

  11. Milne, T. (1981),Biomass Gasification Principles and Technology, Noyes Data Corporation, Park Ridge, New Jersey, pp. 91–118.

    Google Scholar 

  12. Shafizadeh, F. and McGinnis, G. D. (1971),Carbohydrate Research 25, 23–28.

    Article  Google Scholar 

  13. Duvvuri, M. S., Muhlenkamp, S. P., Iqbal, K. Z., and Welker, J. R. (1975),Journal of Fire and Flammability 6, 468–477.

    Google Scholar 

  14. Koufopanos, C. A., Maschio, G., and Lucchesi, A. (1989),Canadian Journal of Chemical Engineering 67, 75–84.

    Article  CAS  Google Scholar 

  15. Solters, E. J. and Elder, T. J. (1969),Organic Chemicals from Biomass, CRC Press, Boca Raton, FL.

    Google Scholar 

  16. Shafizadeh, F. and DeGroot, W. F. (1976),Thermal Uses and Properties of Carbohydrates and Lignins, Academic, New York, pp. 1–6.

    Google Scholar 

  17. Lipska-Quinn, A. E., Zeronian, S. H., and McGee, K. M. (1985),Fundamentals of Thermochemical Biomass Conversion, Overend, R. P., Milne, T. A., and Mudge, L. K., eds., Elsevier Applied Science Publishers, New York, pp. 453–471.

    Google Scholar 

  18. Ghaly, A. E. and Ergudenler, A. (1990),Journal of Applied Chemistry and Biotechnology 27(4), 321–330.

    Google Scholar 

  19. Massar, M. M. (1985),Wood and Fiber Science 17(2), 266–273.

    Google Scholar 

  20. Koos, M., Repas, M., Kosik, M., Reisner, V., Mihalov, V., and Ciha, M. (1983),Chem. Zvesti,37(3), 399–408.

    CAS  Google Scholar 

  21. Freeman, E. S. and Carroll, B. (1958),Journal of Physical Chemistry 62, 394–397.

    Article  CAS  Google Scholar 

  22. Broido, A. (1969),Journal of Polymer Science Part A-2, 7, 1761–1773.

    CAS  Google Scholar 

  23. Kaur, B., Gur, I. S., and Bhatnagar, H. L. (1986),Journal of Applied Polymer Science 31, 667–683.

    Article  CAS  Google Scholar 

  24. Agrawal, R. K. (1988),Canadian Journal of Chemical Engineering 66, 403–412.

    CAS  Google Scholar 

  25. Graboski, M. (1981),Biomass Gasification—Principles and Technology, Reed, T. B., ed., Noyes Data Corporation, Park Ridge, New Jersey, pp. 154–182.

    Google Scholar 

  26. Wendlandt, W. Wm. (1974),Thermal Methods of Analysis, 2d ed., John Wiley & Sons, New York.

    Google Scholar 

  27. Goldfarb, I. J., Guchan, R., and Meeks, A. C. (1968), Technical Report No. ARML-TR-68-181. Air Force Laboratory, Wright-Patterson AFB, OH.

    Google Scholar 

  28. Ghaly, A. E., Al-Taweel, A. M., Hamdullahpur, F., and Ugwu, I. (1989),Proceedings of the Seventh Canadian Bioenergy R & D Seminar, National Research Council of Canada, Ottawa, Ontario, pp. 655–661.

    Google Scholar 

  29. Tang, W. K. (1967), U.S. Forest Service Research paper No. FPL 71, Madison, WI.

  30. MacKay, G. D. M. (1968),Forest Products 18, 71.

    Google Scholar 

  31. Zwillinger, D. (1989),Handbook of Differential Equations, Academic, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ergudenler, A., Ghaly, A.E. Determination of reaction kinetics of wheat straw using thermogravimetric analysis. Appl Biochem Biotechnol 34, 75–91 (1992). https://doi.org/10.1007/BF02920535

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02920535

Index Entries

Navigation