Skip to main content
Log in

Salt-tolerant and thermostable alkaline protease fromBacillus subtilis NCIM No. 64

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The proteolytic activity produced by aBacillus subtilis isolated from a hot spring was investigated. Maximum protease production was obtained after 38 h of fermentation. Effects of various carbon and nitrogen sources indicate the requirement of starch and bacteriological peptone to be the best inducers for maximum protease production. Requirement for phosphorus was very evident, and the protease was secreted over a wide range of pH 5–11.

The partially purified enzyme was stable at 60°C for 30 min. Calcium ions were effective in stabilizing the enzyme, especially at higher temperature. The enzyme was extremely salt tolerant and retained 100% activity in 5M NaCl over 96 h. The molecular weight of the purified enzymes as determined by SDS-PAGE was 28,000. The enzyme was completely inactivated by PMSF, but little affected by urea, sodium dodecyl sulfate, and sodium tripoly phosphate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. McCon, J. W., Tsuru, D., and Yasunobu, K. (1974),J. Biol. Chem. 239, 3706.

    Google Scholar 

  2. Tsuru, D., Kira, H., Yammato, Y., and Fukumoto, J. (1967),Agric. Biol. Chem. 31, 718.

    CAS  Google Scholar 

  3. Hunt, J. A. and Ottensen, M. (1961),Biochem. Biophys. Acta. 48, 411.

    Article  CAS  Google Scholar 

  4. Boyer, H. W. and Carlton, B. C. (1968),Arch. Biochem. Biophys. 128, 442.

    Article  CAS  Google Scholar 

  5. Sinha, N. and Satyanarayana, T. (1991),Ind. J. Microbiol. 31, 425.

    Google Scholar 

  6. Kalisz, H. M. (1988), inAdvances in Biochem. Engg and Biotech., vol. 36, Feichter, A., ed., Springer-Verlag, Berlin, Heidelberg.

    Google Scholar 

  7. Qoronfleh, M. W. and Streips, U. N. (1986),Biochem. Biophys. Res. Comm. 138, 526.

    Article  CAS  Google Scholar 

  8. Kelly, C. T. and Fogarty, W. M. (1976),Process Biochem. 11, 3.

    CAS  Google Scholar 

  9. Khire, J. M. and Pant, A. (1992),World J. Microbiol. Biotech. 8, 167.

    Article  CAS  Google Scholar 

  10. Buchanan, R. E. and Gibbons, N. E. (1974),Bergey's Manual of Determinative Bacteriology, 8th ed. The Williams and Wilkins Co., Baltimore.

    Google Scholar 

  11. Kunitz, M. (1947),J. Gen. Physiol. 30, 291.

    Article  CAS  Google Scholar 

  12. Millet, J. (1970),J. Appl. Bacteriol. 33, 207.

    CAS  Google Scholar 

  13. Nehete, P. N., Shah, V. D., and Kothari, R. M. (1986),Enz. Microbiol. Tech. 8, 370.

    Article  CAS  Google Scholar 

  14. Takami, H., Akiba, T., and Harikoshi, K. (1989)Appl. Microbiol. Biotech. 30, 120.

    Article  CAS  Google Scholar 

  15. Ferrari, E., Howard, S. M. H., and Hoch, J. A. (1986),J. Bacteriol. 166, 173.

    CAS  Google Scholar 

  16. Moon, S. H. and Parulekar, S. J. (1991),Biotech. Bioeng. 37, 467.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kembhavi, A.A., Kulkarni, A. & Pant, A. Salt-tolerant and thermostable alkaline protease fromBacillus subtilis NCIM No. 64. Appl Biochem Biotechnol 38, 83–92 (1993). https://doi.org/10.1007/BF02916414

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02916414

Index Entries

Navigation