Skip to main content
Log in

The characteristics, origins, and geodynamic settings of supergiant gold metallogenic provinces

  • Published:
Science in China Series D: Earth Sciences Aims and scope Submit manuscript

Abstract

There are six distinct classes of gold deposits, each represented by metallogenic provinces, having 100's to >1000 tonne gold production. The deposit classes are: (1) orogenic gold; (2) Carlin and Carlin-like gold deposits; (3) epithermal gold-silver deposits; (4) copper-gold porphyry deposits; (5) iron-oxide copper-gold deposits; and (6) gold-rich volcanic hosted massive sulfide (VMS) to sedimentary exhalative (SEDEX) deposits. This classification is based on ore and alteration mineral assemblages; ore and alteration metal budgets; ore fluid pressure(s) and compositions; crustal depth or depth ranges of formation; relationship to structures and/or magmatic intrusions at a variety of scales; and relationship to the P-T-t evolution of the host terrane. These classes reflect distinct geodynamic settings. Orogenic gold deposits are generated at mid-crustal (4–16 km) levels proximal to terrane boundaries, in transpressional subduction-accretion complexes of Cordilleran style orogenic belts; other orogenic gold provinces form inboard, by delamination of mantle lithosphere, or plume impingement. Carlin and Carlin-like gold deposits develop at shallow crustal levels (<4 km) in extensional convergent margin continental arcs or back arcs; some provinces may involve asthenosphere plume impingement on the base of the lithosphere. Epithermal gold and copper-gold porphyry deposits are sited at shallow crustal levels in continental margin or intraoceanic arcs. Iron oxide copper-gold deposits form at mid to shallow crustal levels; they are associated with extensional intracratonic anorogenic magmatism. Proterozoic examples are sited at the transition from thick refractory Archean mantle lithosphere to thinner Proterozoic mantle lithosphere. Gold-rich VMS deposits are hydrothermal accumulations on or near the seafloor in continental or intraoceanic back arcs.

The compressional tectonics of orogenic gold deposits is generated by terrane accretion; high heat flow stems from crustal thickening, delamination of overthickened mantle lithosphere inducing advection of hot asthenosphere, or asthenosphere plume impingement. Ore fluids advect at lithostatic pressures. The extensional settings of Carlin, epithermal, and copper-gold porphyry deposits result from slab rollback driven by negative buoyancy of the subducting plate, and associated induced convection in asthenosphere below the over-riding lithospheric plate. Extension thins the lithosphere, advecting asthenosphere heat, promotes advection of mantle lithosphere and crustal magmas to shallow crustal levels, and enhances hydraulic conductivity. Siting of some copper-gold porphyry deposits is controlled by arc parallel or orthogonal structures that in turn reflect deflections or windows in the slab. Ore fluids in Carlin and epithermal deposits were at near hydrostatic pressures, with unconstrained magmatic fluid input, whereas ore fluids generating porphyry copper-gold deposits were initially magmatic and lithostatic, evolving to hydrostatic pressures. Fertilization of previously depleted sub-arc mantle lithosphere by fluids or melts from the subducting plate, or incompatible element enriched asthenosphere plumes, is likely a factor in generation of these gold deposits. Iron oxide copper-gold deposits involve prior fertilization of Archean mantle lithosphere by incompatible element enriched asthenospheric plume liquids, and subsequent intracontinental anorogenic magmatism driven by decompressional extension from far-field plate forces. Halogen rich mantle lithosphere and crustal magmas likely are the causative intrusions for the deposits, with a deep crustal proximal to shallow crustal distal association. Gold-rich VMS deposits develop in extensional geodynamic settings, where thinned lithosphere extension drives high heat flow and enhanced hydraulic conductivity, as for epithermal deposits. Ore fluids induced hydrostatic convection of modified seawater, with unconstrained magmatic input. Some gold-rich VMS deposits with an epithermal metal budget may be submarine counterparts of terrestrial epithermal gold deposits. Real time analogs for all of these gold deposit classes are known in the geodynamic settings described, excepting iron oxide copper-gold deposits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Boyle, R. W., The geochemistry of gold and its deposits, Geological Survey of Canada Bulletin 280, 1979, 580.

    Google Scholar 

  2. Hodgson, C. J., MacGeehan, P. J., A review of the geological characteristics of “gold only” deposits in the Superior Province of the Canadian Shield, Geology of Canadian Gold Deposits, Canadian Institute of Mining and Metallogeny Special Paper 24, 1982, 211–229.

  3. Bache, J. J., World Gold Deposits, A Geological Classification, New York, Academic, 1987, 18–26.

    Google Scholar 

  4. Poulson, K. H., Lode gold, Geology of Canadian Mineral Deposit Types (eds. Eckstrand O.R., Sinclair, W.D. Thorpe. R.I.), Geological Survey of Canada (Geology of Canada 8), 1995, 323–392.

  5. Robert, F., Poulsen, K. H., Dube, B., Gold deposits and their geological classification, Proceedings of Exploration 97, 4th December International Conference on Mineral Exploration (ed. Gubins, A.G.), 1997, 209–220.

  6. Stein, M., Hofinann, A. W., Mantle plumes and episodic crustal growth. Nature, 1994, 372: 63.

    Article  Google Scholar 

  7. Vander Hilst, R. D., Widiyantro, S., Creager, K. C. et al., ”Structure of the lowermost mantle and D”, The Core-Mantle Boundary Region, (eds. Gurnis, M., Wysession, M. E., Knittle, E.), Geodynamics Series, 1998, 28: 5.

    Google Scholar 

  8. Mitchell, A. H. G., Garson, M. S., Mineral Deposits and Global Tectonic Settings, London: Academic, 1981, 405.

    Google Scholar 

  9. Sawkins, F. J., Metal Deposits in Relation to Plate Tectonics. Berlin: Springer-Verlag, 1984, 325.

    Google Scholar 

  10. Hoffman, P. E., United plates of America, the birth of a craton, Annual Review of Earth Planetary Science, 1988, 16: 543.

    Article  Google Scholar 

  11. Murphy, J. B., Nance, R. D., Mountain belts and the supercontinent cycle, Scientific American, 1992, 266: 84.

    Google Scholar 

  12. Rogers, J. W., A history of continents in the past three billion years, Journal of Geology, 1996, 104: 91.

    Google Scholar 

  13. Barley, M. E., Groves, D. I., Supercontinental cycles and the distribution of metal deposits through time, Geology 1992, 20: 291.

    Article  Google Scholar 

  14. Sengor, A. M. C., Plate Tectonics and Orogenic Research After 25 Years: A Tethyan Perspective, Earth Science Reviews, 1990, 27: 1.

    Article  Google Scholar 

  15. Kerrich, R., Wyman, D. A., Geodynamic setting of mesothermal gold deposits: An association with accretionary tectonic regimes, Geology, 1990, 18: 882.

    Article  Google Scholar 

  16. Kerrich, R., Feng, R.: Archean geodynamics and the Abitibi-Pontiac collision: implications for advection of fluids at transpressive collisional boundaries and the origin of giant quartz vein systems, Earth Science Reviews, 1992, 32: 33.

    Article  Google Scholar 

  17. Kerrich, R., Wyman, D. A., The mesothermal gold-lamprophyre association: significance on accretionary geodynamic setting, supercontinent cycles, and metallogenic processes, Mineralogy and Petrology, 1994, 51: 147.

    Article  Google Scholar 

  18. Kelemen, P. B., Hart, S. R., Bernsrein, S., Silica enrichment in the continental upper mantle via melt/rock reaction, EPSL., 1998, 164: 387.

    Article  Google Scholar 

  19. Kerrich, R., Wyman, D. A., The trace element systematics of igneous rocks in mineral exploration: an overview, Trace Element Geochemistry of Volcanic Rocks: Applications for Massive Sulfide Exploration (ed. Wyman, D.A.), Geological Association of Canada, Short Course Notes, 1996, 12: 1.

  20. Wyman, D. A., Bleeker, W., Kerrich, R., A 2.7 Ga komatiite, low Ti tholeiite, arc tholeiite transition and inferred proto-arc geodynamic setting of the Kidd Creek deposit: evidence from precise trace element data. Economic Geology Monograph 10, 1999, 511.

    Google Scholar 

  21. Barley, M. E., Krapez, B., Groves, D. I. et al., The late Archean bonanza: metallogenic and environmental consequences of the interaction between mantle plumes, lithospheric tectonics and global cyclicity, Precambrian Research, 1998, 91: 65.

    Article  Google Scholar 

  22. Sun, S. S., Nesbitt, R. W., McCulloch, M. T., Geochemistry and petrogenesis of Archaean and early Proterozoic siliceous high-magnesian basalts, Boninites (ed. Crawford, A. J.) Winchester: Unwin Hyman, 1989, 148.

    Google Scholar 

  23. Condie, K. C., Episodic continental growth and supercontinents: a mantle avalanche connection? EPSL 1998, 163: 97–108.

    Article  Google Scholar 

  24. Kearey, P., Vine, F. J., Global Tectonics, Oxford: Blackwell, 1990, 302.

    Google Scholar 

  25. Bickle, M. J., Mantle evolution, Early Precambrian Basic Magmatism (eds. Hall, R. P., Hughes, D. J.), Glasgow: Blackie, 1990, 111–135.

    Google Scholar 

  26. Drummond, M. S., Defant, M. J., Kepezhinskas, P. K., Petrogenesis of slab-derived trondjemite-tonalite-dacite/adakite magmas, Earth Science, 1996, 87: 205.

    Google Scholar 

  27. Groves, D. I., Goldfarb, R. J., Gebre-Mariam, M. et al., Orogenic gold deposits: a proposed classification in the context of their crustal distribution and relationship to other gold deposit types, Ore Geology Reviews, 1998, 13: 7.

    Article  Google Scholar 

  28. Groves, D. I., The crustal continuum model for late-Archaean lode-gold deposits of the Yilgarn Block, Western Australia, Mineralium Deposita, 1993, 28: 366.

    Article  Google Scholar 

  29. Sillitoe, R. H., Tectonic segmentation of the Andes: implications for magmatism and metallogeny, Nature, 1974, 250: 542.

    Article  Google Scholar 

  30. Berger, B. R., Bagby, W. C., The geology and origin of Carlin-type gold deposits, Gold Metallogeny and Exploration (ed. Foster, R.P.), Glasgow: Blackie, 1991, 210–248.

    Google Scholar 

  31. Bonham, H. F. Jr., Bulk mineable gold deposits of the Western United States, Economic Geology Monograph 6, 1989, 193–207.

    Google Scholar 

  32. Henley, R. W., Epithermal deposits in volcanic terranes, Gold Metallogeny and Exploration (ed. Foster, R.P.), Glasgow: Blackie, 1991, 133–164.

    Google Scholar 

  33. Groves, D. I., Phillips, G. N., The genesis and tectonic controls on Archean lode gold deposits of the Western Australian shield: a metamorphic-replacement model. Ore Geology Reviews, 1987, 2: 287.

    Article  Google Scholar 

  34. Kerrich, R., The stable isotope geochemistry of Au−Ag vein deposits in metamorphic rocks, Mineralogical Association of Canada Short Course 13 (ed. Kyser T.K.), 1987, 287.

  35. Kerrich, R., Geodynamic setting and hydraulic regimes: shear zone hosted mesothermal gold deposits. Mineralization and Shear Zones, Geological Association of Canada Short Course 6, 1989, 89–128.

    Google Scholar 

  36. Kerrich, R., Geochemical evidence on the sources of fluids and solutes for shear zone hosted mesothermal Au deposits, Mineralization and Shear Zones, Geological Association of Canada Short Course 6, 1989, 129–197.

    Google Scholar 

  37. Colvine, A. C., An empirical model for the formation of Archean gold deposits: products of final cratonization of the Superior Province, Canada. Economic Geology Monograph 6, 1989, 37–53.

    Google Scholar 

  38. Colvine, A. C., Fyon, J. A., Heather, K. B. et al., Archean lode gold deposits in Ontario, Ontario Geological Survey Misc. Paper 139, 1988, 136.

  39. Goldfarb, R. J., Leach, D. L., Rose, S. C. et al., Fluid inclusion geochemistry of gold-bearing quartz veins of the Juneau Gold belt, southeastern Alaska: implications for ore genesis, Economic Geology Monograph 6, 1989, 363–375.

    Google Scholar 

  40. Goldfarb, R. J., Miller, L. D., Leach, D. L. et al., Gold deposits in metamorphic rocks of Alaska, Economic Geology Monograph 9, 1997, 151–190.

    Google Scholar 

  41. Goldfarb, R. J., Snee, L. W., Pickthorn, W. J. et al., Orogenesis, high-T thermal events, and gold vein formation within metamorphic rocks of the Alaskan Cordillera, Mineralogical Magazine, 1993, 57: 375.

    Article  Google Scholar 

  42. Rock, N. M. S., Groves, D. I., Perring, C. S. et al., Gold, lamprophyres, and porphyries; what does their association mean?, Economic Geology Monograph 6, 1989, 609–625.

    Google Scholar 

  43. Ho, S. E., Bennett, J. M., Cassidy, K. F., Fluid inclusion studies, Gold Deposits of the Archaean Yilgarn Block, Western Australia: Nature, Genesis and Exploration Guides (eds. Ho, S.E., Groves, D.I., Bennett, J.M.), Perth: Vanguard Press, 1990, 198–211.

    Google Scholar 

  44. Ho, S. E., Groves, D. I., Bennett, J. M. et al., Gold deposits of the Archaean Yilgarn Block, Western Australia: Nature, Genesis and Exploration Guides, Perth: Vanguard Press, 1990, 407.

    Google Scholar 

  45. Ho, S. E., Groves, D. I., McNaughton, N. J. et al., The source of ore fluids and solutes in Archean lode gold deposits of Western Australia. Journal of Volcanology and Geothermical Resources, 1992, 50: 173.

    Article  Google Scholar 

  46. Kontak, D. J., Smith, P. M., Kerrich, R. et al., An integrated model for Meguma Group lode gold deposits, Nova Scotia, Canada, Geology, 1990, 18: 238.

    Google Scholar 

  47. Cox, S.F., Wall, V.I., Etheridge, M.A. et al., Deformational and metamorphic processes in the formation of mesothermal vein-hosted gold deposits—examples from the Lachlan Fold Belt in central Victoria. Ore Geology Review, 1991, 6: 391.

    Article  Google Scholar 

  48. Groves, D. I., Foster, R. P., Archaean lode gold deposits, Gold Metallogeny and Exploration (ed. Foster, R. P.), Glasgow: Blackie and Son, 1991, 63–103.

    Google Scholar 

  49. Poulsen, K. H., Card, K. D., Franklin, J. M., Archean tectonic and metallogenic evolution of the Superior Province of the Canadian Shield, Precambrian Research, 1992, 58: 25.

    Article  Google Scholar 

  50. Foster, R. P., Piper, D. P., Archaean lode gold deposits in Africa, crustal setting, metallogenesis and cratonization, Ore Geology Reviews, 1993, 8: 303.

    Article  Google Scholar 

  51. Phillips, G. N., Hughes, M.J., The geology and gold deposits of the Victorian gold province, Ore Geology Reviews, 1996, 11: 255.

    Article  Google Scholar 

  52. Robert, F., Diverse gold mineralization styles in Precambrian greenstone terranes in Canada, Precambrian 95, 1995, 126.

    Google Scholar 

  53. McCuaig, T. C., Kerrich, R., Groves, D. I. et al., The nature and dimensions of regional and local gold-related hydrothermal alteration in tholeiitic metabasalts in the Norseman Goldfields: the missing link in a crustal continuum of gold deposits. Mineralium Deposita, 1993, 28: 420.

    Article  Google Scholar 

  54. Jia, Y., Li, X., Kerrich, R., A fluid inclusion study of Au-bearing quartz vein systems in the Central and North Deborah deposits of the Bendigo gold field, central Victoria, Autralia, Economic Geology, 2000, 95: 467.

    Article  Google Scholar 

  55. Böhlke, J. K., Comparison of metasomatic reactions between a common CO-rich vein fluid and diverse wallrocks: intensive variables, mass transfers, and Au mineralization at Alleghany, California, Economic Geology, 1989, 84: 291.

    Google Scholar 

  56. Groves, D. I., Barley, M. E., Barnicoat, A. C. et al., Sub-greenschist- to granulite-hosted Archaean lode gold deposits of the Yilgarn Craton: a depositional continuum from deep-sourced hydrothermal fluids in crustal-scale plumbing systems, The Archaean Terrains: Processes and Metallogeny (eds. Glover, J.E., Ho S.E.), Perth, Vanguard Press, 1992, 325–337.

    Google Scholar 

  57. Kerrich, R., Cassidy, K. F., Temporal relationships of lode gold mineralization to accretion, magmatism, metamorphism and deformation—Archean to present: a review, Ore Geology Reviews, 1994, 9: 263.

    Article  Google Scholar 

  58. Miller, L. D., Goldfarb, R. J., Gehrels, G. E. et al., Genetic links among fluid cycling, vein formation, regional deformation, and plutonism in the Juneau gold belt, southeastern Alaska, Geology, 1994, 22: 203.

    Article  Google Scholar 

  59. Kent, A. J. R., Cassidy, K. F., Fanning, C. M., Archean gold mineralization synchronous with the final stages of cratonization, Yilgarn Craton, Western Australia, Geology, 1996, 24: 879.

    Article  Google Scholar 

  60. Guha, J., Kanwar, R., Vug brines—fluid inclusions: a key to understanding of secondary gold enrichment process and the evolution of deep brines in the Canadian Shield, Saline Water and Gases in the Crystalline Rocks, Geological Association Canada Special Paper 33 (eds. Fritz, P., Frape, S.K.), 1987, 95–101.

  61. Kerrich, R., Ludden, J., The role of fluids during formation and evolution of the Southern Superior province lithosphere: A review, Canadian Journal of Earth Sciences, 2000, 37: 1.

    Article  Google Scholar 

  62. Wyman, D. A., Kerrich, R., Archean lamprophyres, gold deposits and transcrustal structures: implications for greenstone belt gold metallogeny. Economic Geology, 1988, 83: 454.

    Google Scholar 

  63. Hodgson, C. J., The structure of shear-related, vein type gold deposits: a review. Ore Geology Reviews, 1989, 4: 231.

    Article  Google Scholar 

  64. Swager, C., Stratigraphy and structure in the Southeastern Goldfields Province, An International Conference on Crustal Evolution, Metallogeny and Exploration of the Eastern Goldfields (Extended Abstracts), AGSO Record 1993/94, 1993, 69–72.

  65. Sibson, R. H., Faulting and fluid flow, Fluids in Tectonically Active Regimes of the Continental Crust, Mineralogical Association of Canada Short Course 18 (ed. Nesbitt, B.E.), 1990, 93–132.

  66. Tavis, G. A., Woodall, R., Bartram, G. D., The geology of Kalgoorie gold field, Proceeding Symposium on Archean Rocks—1970, Perth, Geological Society of Australia Special Publication 3 (ed. Glover, J. E.), 1971, 175–190.

  67. McCuaig, T. C., Kerrich, R., P-T-t-deformation-fluid characteristics of lode gold deposits: evidence from alteration systematics, Ore Geology Review, 1998, 12: 381.

    Google Scholar 

  68. Cox, S. F., Deformation of continents in the dynamics of fluid flow in mesothermal gold systems, Footway Fluid Flow and Mineralization, Geological Society London, 1999, Special Publication 155-123-140.

  69. Hronsky, J. M. A., Cassidy, K. F., Grigson, M. W., Deposit- and mine-scale structure, Gold Deposits of the Archaean Yilgam Block, Western Australia: Nature, Genesis and Exploration Guides. Perth: Vanguard Press, 1990, 38–59.

    Google Scholar 

  70. Wood, P. c., Burrows, D. R., Thomas, A. V. et al. The Hollinger-McIntyre Au-quartz vein system, Timmins, Ontario, Canada: geological characteristics, fluid properties and light stable isotope geochemistry, Gold 86 (ed. Macdonald A.J.). Konsult International Inc., 1986, 56–80.

  71. Neumayer, P., Cabri, L. J., Groves, D. I. et al., The mineralogical distribution of gold and relative timing of gold mineralization in two Archean settings of high metamorphic grade in Australia. Canadian Mineralogist, 1993, 31: 711.

    Google Scholar 

  72. Andrews, A. J., Hugon, H., Durocher, M., et al., The anatomy of a gold bearing greenstone belt: Red Lake, Northwestern Ontario, Canada, Gold'86 (ed. MacDonald, A.J.), Consult International Inc., 1986, 3–22.

  73. Knight, J. T., Groves, D. I., Ridley, J. R., District-scale structural and metamorphic controls on Archean lode-gold mineralization in the amphibolite facies Coolgardie Goldfield, Western Australia. Mineralium Deposita, 1993, 28: 436.

    Article  Google Scholar 

  74. Kerrich, R., Allison, I., Flow mechanisms in rocks: microscopic and mesoscopic structures, and their relation to physical conditions of deformation in the crust. Geoscience Canada, 1978, 5: 110.

    Google Scholar 

  75. Sibson, R. H., Robert, F., Poulsen, H., High angle faults, fluid pressure cycling and mesothermal gold quartz deposits, Geology, 1988, 16: 551.

    Article  Google Scholar 

  76. Robert, F., Boullier, A. M., Firdaous, K., Gold-quartz veins in metamorphic teranes and their bearing on the role of fluids in faulting, JGR, 1995, 100: 12861.

    Article  Google Scholar 

  77. Smith, D. W., Craw, D., Koons, P. O., Tectonic hydrothermal gold mineralisation in the outboard zone of the Southern Alps, New Zealand. New Zealand, JGR, 1996, 39: 201.

    Google Scholar 

  78. Kerrich, R., Geochemistry of gold deposits in the Abitibi greenstone belt, Canadian Institute of Mining and Metallogeny Special Paper 27, 1983, 75.

  79. Mueller, A. G., Groves, D. I., The classification of Western Australian greenstone-hosted gold deposits according to wall-rock-alteration mineral assemblages, Ore Geology Reviews, 1991, 6: 291.

    Article  Google Scholar 

  80. Loucks, R., Mavrogenes, J. A., Gold solubility in supercritical hydrothermal brines measured in synthetic fluid inclusions, Science, 1999, 284: 2159.

    Article  Google Scholar 

  81. Roedder, E., Fluid inclusion evidence bearing on the environments of gold deposition. Gold 82, Geol. Soc. Zimbabwe, Special Publication 1 (ed. Foster, R.P.), 1984, 129–163.

  82. Kesler, S. E., Nature and composition of mineralizing solutions, Greenstone Gold and Crustal Evolution: NUNA Conference Volume (eds. Robert, F. P., Sheahan, A. Green, S. B.), 1990, 86–90.

  83. Crawford, M. L., Fluid inclusions—what can we learn? Earth Science Reviews, 1992, 32: 137.

    Article  Google Scholar 

  84. Burrows, D. R., Wood, P. C., Spooner, E. T. C., Carbon isotope evidence for a magmatic origin for Archean gold-quartz vein ore deposits, Nature, 1986, 321: 851.

    Article  Google Scholar 

  85. Nesbitt, B. E., Gold deposits continuum: a genetic model for lode Au mineralization in the continental crust, Geology, 1988, 16: 1044.

    Article  Google Scholar 

  86. Goldfarb, R. J., Snee, L. W., Miller, M. L. et al., Rapid watering of the crust deduced from ages of mesothermal gold deposits, Nature, 1991, 354: 296.

    Article  Google Scholar 

  87. Jia, Y., Kerrich, R., Nitrogen isotope systematics of mesothermal lode gold deposits: Metamorphic, granitic, meteoric water, or mantle origin?, Geology, 1999, 27: 1051.

    Article  Google Scholar 

  88. Honma, H., Itihara, Y., Distribution of ammonium in minerals of metamorphic and granite rocks, GCA, 1981, 45: 983.

    Google Scholar 

  89. Sucha, V., Elsass, F., Eberl, D. D. et al., Hydrothermal synthesis of ammonium illite, American Mineralogists, 1998, 83: 58.

    Google Scholar 

  90. Clayton, R. N., Isotopic variations in primitive meteorities, Philosophical Transactions of the Royal Society of London, 1981, 303: 339

    Article  Google Scholar 

  91. Cartigny, P., Harris, J. W., Javoy, M., Eclogitic diamond formation at Jwaneng: no room for a recyled component, Science, 1998, 280: 1421.

    Article  Google Scholar 

  92. Javoy, M., Pineau, F., The volatiles record of a “popping” rock from the Mid Atlantic Ridge at 14° N: chemical and isotopic composition of gas trapped in the vesicles, EPSL, 1991, 107: 598.

    Article  Google Scholar 

  93. Javoy, M., Pineau, F., Demaiffe, D., Nitrogen and carbon isotopic compositin in the diamonds of Mbuji Mayi (Zaire), EPSL, 1984, 68: 399.

    Article  Google Scholar 

  94. Boyd, S. R., Mattey, D. P., Pillinger, C. T. et al., Multiple growth events during diamond genesis: an integrated study of carbon and nitrogen isotopes and nitrogen aggregation state in coated stone, EPSL, 1987, 86: 341.

    Article  Google Scholar 

  95. Boyd, S. R., Pillinger, C. T., Milledge, H. J. et al., C and N isotopic composition and the infrared absorption spectra of coated diamonds: evidence for the regional uniformity of CO2−H2O rich fluids in lithospheric mantle, EPSL, 1992, 109: 633.

    Article  Google Scholar 

  96. Peters, K. E., Sweeney, R. E., Kaplan, I. R., Correlation of carbon and nitrogen stable ratios in sedimentary organic matter, Limnology and Oceanography, 1978, 23: 598.

    Article  Google Scholar 

  97. Wlotzka, F., Nitrogen, Handbook of Geochemistry II (ed. Wedepohl, K. H.), New York: Springer-Verlag, 1972, 7B-1–7O-3.

    Google Scholar 

  98. Hall, A., The ammonium content of Caledonoan granites, Journal of the Geological Society, London, 1987, 144: 671.

    Article  Google Scholar 

  99. Boyd, S. R., Hall, A., Pillinger, C. T., The measurement of δ15N in crustal rocks by static vacuum mass spectrometry: application to the origin of the ammonium in the Cornubian batholith, southwest England, GCA, 1993, 57: 1339.

    Google Scholar 

  100. Haendel, D., Mühle, K., Nitzsche, H. et al., Isotopic variations of the fixed nitrogen in metamorphic rocks, GCA, 1986, 50: 749.

    Google Scholar 

  101. Owens, N. J. P., Natural variations in15N in the marine environment, Adv. Mar. Bio. 24, 1987, 389–451.

    Google Scholar 

  102. Polat, A., Kerrich, R., Geodynamic controls on gold mineralization in greenstone belts of the Archean Superior Province, Abstracts with Program Geological Society of America, 1997, A-444.

  103. England, P. C., Thompson, A. B., Pressure-temperature-time paths of regional metamorphism: I, Heat transfer during the evolution of regions of thickened continental crust, Journal of Petrology, 1984, 25: 894.

    Google Scholar 

  104. Redden, J. A., Peterman, Z. E., Zartman, R. E. et al., U−Th−Pb geochronology and preliminary interpretation of Precambrian tectonic events in the Black Hill, South Dakota, Geological Association of Canada Spectial Paper 37, 1990, 229–252.

  105. Dahl, P. S., Holm, D. K., Gardner, E. T. et al., New constraints on the timing of Early Proterozoic tectonism in the Black Hill (South Dakota), with implications for docking of the Wyoming province with Laurentia, GSA Bulletin, 1999, 111: 1335.

    Article  Google Scholar 

  106. Zhou, T., Lu, G., Tectonics, granitoids and mesozoic gold deposits in East Shandong, China, Ore Geology Reviews, 2000, 16: 71.

    Article  Google Scholar 

  107. Bagby, W. C., Berger, B. R., Geologic characteristics of sediment-hosted, disseminated precious-metal deposits in the western United States, in Geology and Geochemistry of Epithermal Systems (eds. Berger, B.R., Bethke, P.M.), Reviews in Economic Geology, Society of Economic Geologists, 1985, 2: 169.

  108. Sillitoe, R. H., Bonham, H. F., Sediment-hosted gold deposits—Distal products of magmatic-hydrothermal systems, Geology, 1990, 18: 157.

    Article  Google Scholar 

  109. Phillips, G. N., Powell, R., Link between gold provinces, Economic Geology, 1993, 88: 1084.

    Google Scholar 

  110. Phillips, G. N., Thomson, D. F., Kuehn, C. A., Deep weathering of deposits in the Yilgam and Carlin gold provinces: Regolith '98 Proceedings, CRC-LEME, Perth, 1998, 1–22.

  111. Percival, T. J., Bagby, W. C., Radtke, A. S., Physical and chemical features of precious metal deposits hosted by sedimentary rocks in the western United States, Bulk Mineable Precious Metal Deposits of the Western United States (eds. Schafer, R.W., Cooper, J.J., Vikre, P.G.), Geological Society of Nevada, 1988, 11–34.

  112. Christensen, O. D., Carlin trend geologic overview, Society of Economic Geologists Guidebook Series, 1993, 18: 12.

    Google Scholar 

  113. Roberts, R. J., Alignments of mining districts in north-central Nevada, U.S.G.S. Professional Paper 400-B, 1960, B17.

  114. Shawe, D. R., Structurally controlled gold trends imply large gold resources in Nevada, Geology and Ore Deposits of the Great Basin (eds. Raines, G.L., Lisle, R.E., Schafe, R.W. et al.), Geological Society of Nevada, 1991, 199–212.

  115. Grauch, V. J. S., Jachens, R. C., Blakely, R. J., Evidence for a basement feature related to the Cortez disseminated gold trend and implications for regional exploration in Nevada, Economic Geology, 1995, 90: 203.

    Google Scholar 

  116. Hausen, D. M., Kerr, P. F., Fine gold occurrence at Carlin, Nevada, Ore Deposits of the United States 1933–1967, The Graton-Sales Volume, American Institute of Mining, Metallurgical, and Petroleum Engineer, 1968, 908–940.

  117. Radtke, A. S., Geology of the Carlin gold deposit, Nevada, U.S.G.S. Professional Paper 1267, 1985, 124.

  118. Teal, L., Jackson, M., Geologic overview of the Carlin trend gold deposits and descriptions of recent deep discoveries, Society of Economic Geologists Guidebook Series (eds. Vikre, P., Thompson, T.B., Bettles, K. et al.), 1997, 28: 3.

    Google Scholar 

  119. Kuehn, C. A., Studies of Disseminated Gold Deposits near Carlin, Nevada—Evidence for a Deep Geologic Setting of Ore Formation (Ph.D. Thesis), Pennsylvania State University, 1989, 395.

  120. Bakken, B. M., Gold Mineralization, Wall-Rock Alteration, And the Geochemical Evolution of the Hydrothermal System in the Main Orebody, Carlin Mine (Ph.D. Thesis), Stanford University, 1990, 236.

  121. Hofstra, A. H., Leventhal, J. S., Northrop, H. R. et al., Genesis of sediment-hosted disseminated gold deposits by fluid mixing and sulfidization: Chemical-reaction-path modeling of ore-depositional processes documented in the Jerritt Canyon district, Nevada, Geology, 1991, 19: 36.

    Article  Google Scholar 

  122. Lamb, J. B., Cline, J., Depths of formation of the Meikle and Betze/Post deposits, Society of Economic Geologists Guidebook Series (eds. Vikre, P., Thompson, T. B., Bettles, K. et al.), 1997, 28: 101.

    Google Scholar 

  123. Ilchik, R. P., Barton, M. D., An amagmatic model of Carlin-type gold deposits, Economic Geology, 1997, 92 269.

    Google Scholar 

  124. Hofstra, A. H., Snee, L. W., Rye, R. O. et al., Age constraints on Jerritt Canyon and other Carlin-type gold deposits in the western United States—Relationship to mid-Tertiary extension and magmatism, Economic Geology, 1999, 94: 769.

    Google Scholar 

  125. Poulson, K. H., Carlin-type gold deposits and their potential occurrence in the Canadian Cordillera, Current Research 1996A, Geological Survey of Canada, 1996, 1–9.

  126. Hart, C. J. R., Baker, T., Burke, M., New exploration concepts for country-rock-hosted, intrusion-related gold systems—Tintina gold belt in Yukon, The Tintina Gold Belt—Concepts, Exploration, and Discoveries: Special Volume 2. 2000, 145–172.

    Google Scholar 

  127. Li, Z., Peters, S. G., Comparative geology and geochemistry of sedimentary-rock-hosted (Carlin-type) gold deposits in the People's Republic of China and in Nevada, USA, U.S. Geological Survey Open-file Report 98-466, 1998, 160.

  128. Mehrabi, B., Yardley, B. W. D., Cann, J. R., Sediment-hosted disseminated gold mineralisation at Zarshuran, NW Iran, Mineralium Deposita, 1999, 34: 673.

    Article  Google Scholar 

  129. Asadi, H. H., Voncken, J. H. L., Hale, M., Invisible gold at Zarshuran, Iran, Economic Geology, 1999, 94: 1367.

    Google Scholar 

  130. Tooker, E. W., Geologic characteristics of sediment- and volcanic-hosted diseminated gold deposits—search for an occurrence model, U.S.G.S. Bulletin 1646, 1985, 150.

    Google Scholar 

  131. Emsbo, P., Hutchinson, R. W., Hofstra, A. H. et al., Syngenetic Au on the Carlin trend—Implications for Carlin-type deposits, Geology, 1999, 27: 59.

    Article  Google Scholar 

  132. Murphy, J. B., Oppliger, G. L., Brimhall, G. H. et al., Plume-modified orogeny—An example from the western United States, Geology, 1998, 26: 731.

    Article  Google Scholar 

  133. Oppliger, G. L., Murphy, J. B., Brimhall, G. H. et al., Is the ancestral Yellowstone hotspot responsible for Tertiary “Carlin” mineralization in the Great Basin of Nevada?, Geology, 1997, 25: 627.

    Article  Google Scholar 

  134. Liu, D., Yunjin, T., Jianye, W. et al., Carlin-type gold deposits in China, Brazil Gold'91 (ed. Ladeira, E.A.), Rotterdam: Balkema, 1991, 89–93.

    Google Scholar 

  135. Zhang, F. X., Chen, Y. J., Li, C. et al., Geological and geochemical character and genesis of the Jinlongshan-Qiuling gold deposits in Qinling orogen: Metallogenic mechanism of the Qinling-pattern Carlin-type gold deposits, Science in China, 2000, 43(Suppl): 95 (this issue).

    Article  Google Scholar 

  136. Metcalfe, I., Pre-Cretaceous evolution of SE Asian terranes, Tectonic Evolution of Southeast Asia (eds. Hall, R., Blundell, D. J.), Geological Society Special Publication 106, 1996, 97–122.

  137. Yin, A., Nie, S., A Phanerozoic palinspastic reconstruction of China and its neighboring regions, The Tectonic Evolution of Asia (eds. Yin, A., Harrison, T. M.), Cambridge: Cambridge University Press, 1996, 442–485.

    Google Scholar 

  138. Daliran, F., Walther, J., Stuben, D., Sediment-hosted disseminated gold mineralization in the North Takab geothermal field, NW Iran, Mineral Deposits—Processes to Processing, Rotterdan, Balkema, 1999, 837–840.

    Google Scholar 

  139. Sengor, A. M. C., Natal'in, B., Paleotectonics of Asia—fagments of a synthesis, The Tectonic Evolution of Asia (eds. Yin, A., Harrison, T. M.), Cambridge: Cambridge University Press, 1996, 486–640.

    Google Scholar 

  140. Sillitoe, R. H., Gold-rich porphyry copper deposits; geological model and exploration implications, Mineral Deposit Modeling: Geological Association of Canada Special Paper 40, 1993, 465–478.

  141. Berger, B. R., Eimon, W. C., Conceptual models of epithermal precious metal deposits, Ameriacan Institute of Mineralogy and Metallurgy, 1983, 191–205.

  142. Sillitoe, R. H., Styles of high-sulphidation gold, silver and copper mineralisation in porphyry and epithermal environments, PACRIM '99 (ed. Australian Institute of Mining and Metallurgy), 1999, 29–44.

  143. Abzalov, M. Z., Gold deposits of the Russian North East (The Northern Circum Pacific): Metallogenic overview, PACRIM '99 (ed. The Australasian Institute of Mining and Metallurgy), 1999, 701–714.

  144. So, C. S., Zhang, D., Yun, S. T. et al., Alteration-mineralization zoning and fluid inclusions of the high sulfidation epithermal Cu−Au mineralization at Zijinshan, Fujian Province, China, Economic Geology, 1998, 93: 961.

    Google Scholar 

  145. Mitchell, A. H. G., Distribution and genesis of some epizonal Zn−Pb and Au provinces in the Carpathian-Balkan region, Transction of the Institute of Mining and Metallogy (B105), 1996, 127–138.

    Google Scholar 

  146. Foster, R. P., Gold mineralization in Europe, characteristics and tectonic setting, Minerals Industry International, 1997, 24–31.

  147. Alderton, D. H. M., Thirlwall, M. F., Baker, J. A., Hydrothermal alteration associated with gold mineralization in the southern Apuseni Mountains, Romania: preliminary Sr isotopic data, Mineralium deposita, 1998, 33: 520.

    Article  Google Scholar 

  148. Islamov, F., Kremenetsky, A., Minzer, E. et al., The Kochbulak-Kairagach ore filed, Au, Ag, and Cu deposits of Uzbekistan, Excursion B6 of the Joint SGA-IAGOD Symposium of International Field Conference of IGCP-373, 1999, 91–106.

  149. Moralev, G. V., Shatagin, K. N., Rb−Sr study of Au−Ag Shkol'noe deposit (Kurama Mountains, north Tadjikistan): age of mineralization and time scale of hydrothermal processes, Mineralium Deposita, 1999, 34: 405.

    Article  Google Scholar 

  150. Perkins, C., Walshe, J. L., Morrison, G., Metallogenic episodes of the Tasman fold belt system, eastern Australia, Economic Geology, 1995, 90: 1443.

    Google Scholar 

  151. Corbett, G. J., Leach, T. M., Southwest Pacific Rim gold-copper systems: Structure, alteration and mineralization, Society of Economic Geologists Special Publication 6, 1998, 240.

  152. White, N. C., Leake, M. J., McCaughey, S. N. et al., Epithermal gold deposits of the southwest Pacific, Journal of Geochemical Exploration, 1995, 54: 87.

    Article  Google Scholar 

  153. Sillitoe, R. H., Giant and bonanza gold deposits in the epithermal environment: Assessment of potential genetic factors, Giant Ore Deposits, Society of Economic Geologists Special Publication 2, 1993, 125–156.

  154. Sillitoe, R. H., Hannington, M. D., Thompson, J. F. H., High sulfidation deposits in the volcanogenic massive sulfide environment, Economic Geology, 1996, 91: 204.

    Google Scholar 

  155. Sillitoe, R. H., Characteristics and controls of the largest porphyry copper-gold and epithermal gold deposits in the circum-Pacific region, Australian Journal of Earth Sciences, 1997, 44: 373.

    Article  Google Scholar 

  156. Kesler, S. E., Russell, N., Seaward, M. et al., Geology and geochemistry of sulfide mineralization underlying the puebo Viejo gold-silver oxide deposit, Dominican Republic, Economic Geology, 1981, 76: 1096.

    Google Scholar 

  157. White, N. C., Poizat, V., Epithermal deposits, diverse styles, diverse origins?, Australian Institute of Mining and Metallurgy Publication Series 9, 1995, 623–628.

  158. Goldfarb, R. J., Hart, C. J. R., Mortensen, J. K., Metallogeny of the northeastern Pacific rim? An example of the distribution of ore deposits along a growing continental margin, PACRIM '99 Symposium Volume (ed. Dow, J.), 1999, 273–286.

  159. Lehmann, B., Heinhorst, J., Hein, U. et al., The Bereznjakovskoje gold trend, southern Urals, Russia, Mineralium Deposita, 1999, 34: 241.

    Article  Google Scholar 

  160. Dube, B., Lauziere, K., Boisvert, E., Preliminary report on the geological setting of the acid-sulphate Hope Brook gold deposit, in SW Newfoundland, Report of Activities-Newfoundland (ed. Geological Survey Branch), 1995, 49–50.

  161. Hayba, D. O., Bethke, P. M., Heald, P. et al., Geologic, mineralogic, and geochemical characteristics of volcanic-hosted epithermal precious-metal deposits, Geology and Geochemistry of Epithermal Systems (eds. Berger, B. R., Bethke, P. M.), Reviews in Economic Geology, 1985, 2: 129.

    Google Scholar 

  162. Heald, P., Foley, N. K., Hayba, D. O., Comparative anatomy of volcanic-hosted epithermal deposits: acid sulphate and adularia-sericite types, Economic Geology, 1987, 82: 1.

    Google Scholar 

  163. Hedenquist, J. W., Izawa, E., Arribas, A. et al., Epithermal Gold Deposits: Styles, Characteristics, and Exploration, Society of Resource Geology Special Publication 1, 1996, 1.

  164. White, N. C., Hedenquist, J. W., Epithermal gold deposits: Styles, characteristics and exploration, Society of Economic Geologists, Newsletter, 1995, 23(1): 9.

    Google Scholar 

  165. Hedenquist, J. W., The ascent of magmatic fluid: Discharge versus mineralization, Magmas, Fluids, and Ore Deposits (ed. Thompson, J. F. H.), Mineralogical Association of Canada Short Course, 1995, 23: 263.

  166. Kay, S. M., Mpodozis, C., Coira, B., Neogene magmatism, tectonism, and mineral deposits of the Central Andes (22° to 33° S Latitude), Geology and Ore Deposits of the Central Andes (ed. Skinner, B. J.), Society of Economic Geologists Special Publication 7, 1999, 27–59.

  167. James, D. E., Sacks, S., Cenozoic formation of the Central Andes: A geophysical perspective, Geology and Ore Deposits of the Central Andes (ed. Skinner, B. J.), Society of Economic Geologists Special Publication 7, 1999, 1–25.

  168. Burchfiel, B. C., Cowan, D. S., Davis, G. A., Tectonic overview of the Cordilleran orogen in the western United States, Geology of North America, 1992, G-3: 407.

    Google Scholar 

  169. Leier, P. V., Ivanov, V. V., Ratkin, V. V. et al., Epithermal gold-silver deposits of northeast Russia: the first40Ar−39Ar age determinations of the ores, Doklady, 1997, 357: 1141.

    Google Scholar 

  170. Goryachev, N. A., Edwards, A. C., Gold metallogeny of North-East Asia, PACRIM '99, 1999, 287–302.

  171. Rubin, C. M., Miller, E. L., Toro, J., Deformation of the northern circum-Pacific margin: variations in tectonic style and plate tectonic implications, Geology, 1995, 23: 897.

    Article  Google Scholar 

  172. Pan, Y., Dong, P., The Lower Changjiang (Yangzi/Yangtze River) metallogenic belt, east central China: intrusion- and wall rock-hosted Cu−Fe−Au, Mo, Zn, Pb, Ag deposits, Ore Geology Reviews, 1999, 15: 177.

    Article  Google Scholar 

  173. Li, X. H., Cretaceous magmatism and lithospheric extension in southeast China, Journal of Asian Earth Sciences, 2000, 18: 293.

    Article  Google Scholar 

  174. Lattanzi, P., Epithermal precious metal deposits of Italy—an overview, Mineralium Deposita, 1999, 34: 630.

    Article  Google Scholar 

  175. Neubauer, F., Cloetingh, S., Dinu, C. et al., Tectonics of the Alpine-Carpathian-Pannonian region: introduction, Tectonophysics, 1997, 272: 93.

    Article  Google Scholar 

  176. Boorder, H. de, Spakman, W., White, S. H. et al., Late Cenozoic mineralization, orogenic collapse and slab detachment in the European Alpine Belt, EPSL, 1998, 164: 569.

    Article  Google Scholar 

  177. Cooke, D. R., Bull, S. W., Large, R. R. et al., The importance of oxidized brines for the formation of Australian Proterozoic stratiform sediment-hosted Pb−Zn (SEDEX) deposits, Economic Geology, 2000, 95:1.

    Google Scholar 

  178. Solomon, M., Groves, D. I., The Geology and Origin of Australia's Mineral Deposits: Oxford Monogr, Geol. Geophy. 24, Oxford: Oxford University Press, 1994, 951.

    Google Scholar 

  179. Henley, R. W., Adams, D. P. M., Strike-slip fault reactivation as a control on epithermal vein-style gold mineralization, Geology, 1992, 20: 443.

    Article  Google Scholar 

  180. Sillitoe, R. H., Major regional factors favouring large size, high hypogene grade, elevated gold content and supergene oxidation and enrichment of porphyry copper deposits, Conference Proceedings of Porphyry and Hydrothermal Copper & Gold Deposits: A Global Perspective (ed. Porter, T. M.), Glenside: Australian Mineral Foundation, 1998, 21–34.

  181. Richards, J. P., Kerrich, R., The Porgera gold mine, Papua New Guinea: magmatic hydrothermal to epithermal evolution of an alkalic-type precious metal deposit, Economic Geology, 1993, 88: 1017.

    Google Scholar 

  182. Lang, J. R., Lueck, B. A., Mortensen, J. K. et al, Triassic-Jurassic silica-undersaturated and silica-saturated alkalic intrusions in the Cordillera of British Columbia-Implications for arc magmatism. Geology, 1995, 23: 451.

    Article  Google Scholar 

  183. Hu, S. X., Chen, Z. M., Fu, S. G. et al., Material sources and regional regularities of ore formation of porphyry copper and molybdenum deposits, Journal of Nanjing University (in Chinese with English abstract), 1984 (Special): 9.

    Google Scholar 

  184. Sheppard, S. M. F., Nielsen, R. L., Taylor, H. P., Oxygen and hydrogen isotope ratios of clay minerals from porphyry copper deposits, Economic Geology, 1969, 64: 755.

    Google Scholar 

  185. Beane, R. E., Titley, S. R., Porphyry copper deposits: part II, hydrothermal alteration and mineralization, Economic Geology Seventy-fifth Anniversary Volume (ed. Skinner, B. J.), 1981, 235–269.

  186. Titley, S. R., Beane, R. E., Porphyry copper deposits; part I, geologic settings, petrology, and tectogenesis, Economic Geology Seventy-fifth Anniversary Volume (ed. Skinner, B. J.), 1981, 214–235.

  187. Cox, D. P., Descriptive model of porphyry Cu−Au, Mineral Deposit Model, U. S. Geological Survey Bulletin 1693 (eds. Cox, D. P., Singer, D. A.), 1986, 110.

  188. Dilles, J. H., Solomon, G. C., Taylor, H. P. et al., Oxygen and hydrogen isotope characteristics of hydrothermal alteration at the Ann-Mason porphyry copper deposit, Yerington, Nevada, Economic Geology, 1992, 87: 44.

    Google Scholar 

  189. Einaudi, M. T., Topics in porphyry copper-gold and related deposits, Short Course for Newmont Western Pacific Exploration Group, 1995, 31.

  190. Freeport-McMoran Mining, Annual Report, Freeport-McMoran Copper-Gold Company, 1994, 1.

  191. MacDonald, G. D., Arnold, L. C., Geological and geochemical zoning of the Grasberg igneous complex, Irian Jaya, Indonesia, Journal of Geochemical Exploration, 1994, 50: 143.

    Article  Google Scholar 

  192. Tooker, E. W., Gold in the Bingham district, Utah, Gold in Porphyry Copper Systems, U. S. Geological Survey Bulletin 1857E, 1990, E1–E16.

  193. Babcock, R. C., Jr., Ballantyne, G. H., Summary of the geology of the Bingham district, Utah, Porphyry Copper Deposits of the American Cordillera, Arizona Geological Society Digest 20, 1995, 316–335.

    Google Scholar 

  194. Clark, G. H., Panguna copper-gold deposit, in Geology of the Mineral Deposits of Australia and Papua New Guinea, Australian Institute of Mining and Metallurgy Monograph Series 14 (ed. Hughes, F. E.), 1990, 1807–1816.

  195. Guilbert, J. M., Geology, alteration, mineralization, and genesis of the Bajo de la Alumbrera porphyry copper-gold deposit, Catamarca Province, Argentina, Porphyry Copper Deposits of the American Cordillera: Arizona Geological Society Digest 20, 1995, 646–656.

    Google Scholar 

  196. Muller, D., Forrestal, P., The shoshonite porphyry Cu−Au association at Bajo de la Alumbrera, Catamarca Provine, Argentina, Mineralogy and Petrology, 1998, 64: 47.

    Article  Google Scholar 

  197. Mitchell, A. H. G., Leach, T. M., Epithermal Gold in the Philippines; Island Arc Metallogenesis: Geothermal Systems and Geology, London: Academic Press, 1991, 457.

    Google Scholar 

  198. Arribas, A., Jr., Hedenquist, J. W., Itaya, T. et al., Contemporaneous formation of adjacent porphyry and epithermal Cu−Au deposits over 300 Ma in northern Luzon, Philippines, Geology, 1995, 23: 337.

    Article  Google Scholar 

  199. Meldrum, S. J., Aquino, R. S., Gonzales, R. I. et al., The Batu Hijau porphyry copper-gold deposit, Sumbawa Island. Indonesia, Journal of Geochemical Exploration, 1994, 50: 203.

    Article  Google Scholar 

  200. Clode, C., Proffett, J., Mitchell, P. et al., Relationships of intrusion, wall-rock alteration and mineralisation in the Batu Hijan copper-gold porphyry deposit. Proceedings of the 1999 Pacrim Congress, Publication Series No. 4/99, 1999, 485: 498.

  201. Rush, P. M., Seegers, H. J., Ok Tedi copper-gold deposits, Geology of the Mineral Deposits of Australia and Papua New Guinea: Australian Institute of Mining and Metallurgy, Monograph Series 14 (ed. Hughes, F. E.), 1990, 1747–1754.

  202. Meyer, C., Hemley, J. J., Wall rock alteration, Geochemistry of Hydrothermal Ore Deposits (ed. Barnes, H. L.), New York: Rinehart and Winston, 1967, 166–235.

    Google Scholar 

  203. Lowell, J. D., Guilbert, J. M., Lateral and vertical alteration-mineralization zoning in porphyry ore deposits, Economic Geology, 1970, 65: 373.

    Google Scholar 

  204. Sillitoe, R. H., Gold-rich porphyry copper deposits of the Circum-Pacific region, an updated overview, Proceedings of the 1990 Pacific Rim Congress, Parkville, Australia (eds, Foots, J., Brennan, T.), 1990, 119–126.

  205. Solomon, M., Subduction, arc reversal, and the origin of porphyry copper-gold deposits in island arcs. Geology, 1990, 18: 630.

    Article  Google Scholar 

  206. Muller, D., Groves, D. I., Direct and indirect associations between potassic igneous rocks, shoshonites and gold-copper deposits, Ore Geology Reviews, 1993, 8: 383.

    Article  Google Scholar 

  207. Muller, D., Groves, D. I., Potassic Igneous Rocks and Associated Gold-Copper Mineralization, Berlin: Springer, 2000, 252.

    Google Scholar 

  208. Bumham, C. W., Hydrothermal fluid at the magmatic stage, Geochemistry of Hydrothermal Ore Deposits (ed. Barnes, H. L.), New York: Rinehart and Winston, 1967, 34–76.

    Google Scholar 

  209. Cline, J. S., Genesis of porphyry copper deposits; the behavior of water, chloride, and copper in crystallizing melts, Porpyry Copper Deposits of the American Cordillera: Arizona Geological Society Digest 20, 1995, 69–82.

  210. Sillitoe, R. H., Thompson, J. F. H., Intrusion-related vein gold deposits; types, tectono-magmatic settings and difficulties of distinction from orogenic gold deposits, Resource Geology, 1998, 48: 237.

    Google Scholar 

  211. Hu, S. X., Wang, H. N., Wang, D. Z. et al., Geology and Geochemistry of Gold Deposits in East China (in Chinese), Beijing: Science Press, 1998, 343.

    Google Scholar 

  212. Baker, R. C., Guilbert, J. M., Regional structural control of porphyry copper deposits in northern Chile, Abstracts with Programs of 1987 Annual Meeting and Exposition of Geological Society of America—19, Geological Society of America, 1987, 578.

  213. Sasso, A. M., Clark, A. H., The Farallon Negro Group, Northwest Argentina: Magmatic, hydrothermal and tectonic implications for Cu−Au metallogeny in the Andean back-arc, Society of Economic Geologists Newsletter No 34, 1998, 8–18.

    Google Scholar 

  214. Skewes, M. A., Stern, C. R., Genesis of the giant late Miocene to Pliocene copper deposits of central Chile in the context of Andean magmatic and tectonic evolution, International Geology Review, 1995, 37: 893.

    Google Scholar 

  215. Kirkham, R. V., Tectonic and structural features of arc deposits, Metallogeny of Volcanic Arcs, British Columbia Geological Survey, 1998, B1-45.

  216. Rak, P., The Relationship Between Gold Deposit Distribution and Major Tectonic Events in Southeast Asia (B.Sc. Honours Thesis), The University of Western Australia, 1999, 98.

  217. Hamilton, W. B., Tectonics of the Indonesian region, U. S. Geological Survey Professional Paper 1078, 1979, 345.

  218. Pilger, R. H., Jr., Plate reconstructions, aseismic ridges, and low-angle subduction beneath the Andes, Geological Society of America Bulletin, 1981, 92: 1448.

    Google Scholar 

  219. Johnson, R. W., Mackenzie, D. E., Smith, I. E., Volcanic rock associations at convergent plate boundaries, reappraisal of the concept using case histories from Papua New Guinea. Geological Society of America Bulletin, 1978, 89: 96.

    Article  Google Scholar 

  220. McDowell, F. W., McMahon, T. P., Warren, P. Q. et al., Pliocene Cu−Au-bearing igneous intrusions of the Gunung Bijih (Ertsberg) District, Irian Java, Indonesia: K−Ar geochronology, Journal of Geology, 1996, 104: 340.

    Google Scholar 

  221. Dickinson, W. R., Snyder, W. S., Plate tectonics of the Laramide Orogeny, Laramide Folding Associated with Basement Block Faulting in the Western United States (ed. Matthews, V.), Geological Society of America Memoir 151, 1978, 355–366.

  222. Bird, P., Laramide crustal thick ening event in the Rocky Mountain foreland and Great Plains, Tectonics, 1984, 3: 741.

    Article  Google Scholar 

  223. Yang, T. F., Lee, T., Chen, C. H. et al., A double island arc between Taiwan and Luzon: consequence of ridge subduction, Tectonophysics, 1996, 258: 85.

    Article  Google Scholar 

  224. van Leeuwen, T. M., 25 years of mineral exploration and discovery in Indonesia, Journal of Geochemical Exploration, 1994, 50: 13.

    Article  Google Scholar 

  225. DeMets, C., Gordon, R. G., Argus, D. F. et al., Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions, Geophysical Research Letters, 1994, 21: 2191.

    Article  Google Scholar 

  226. Hall, R., Reconstructing Cenozoic SE Asia, Tectonic Evolution of Southeast Asia: Geological Special Publication 106 (eds. Hall, R., Blundell, D. J.), 1996, 153-184.

  227. Fletcher, I. R., Garwin, S. L., McNaughton, N. J., SHRIMP U−Pb dating of Pliocene zircons, Abstracts and Proceedings of Beyond 2000: New Frontiers in Isotope Geoscience, Lorne, 2000, 2000, 73–74.

  228. Richardson, A. N., Blundell, D. J., Continental collision in the Banda Arc, Tectonic Evolution of Southeast Asia: Geological Society Special Publication 106 (eds. Hall, R., Blundell, D. J.), 1996, 47–60.

  229. McCaffrey, R., Active tectonics of the eastern Sunda and Banda arcs, JGR-B, 1988, 93: 163.

    Google Scholar 

  230. McCaffrey, R., Slip partitioning at convergent plate boundaries of SE Asia, Tectonic Evolution of Southeast Asia: Geological Society Special Publication 106 (eds. Hall, R., Blundell, D. J.), 1996, 3–18.

  231. Bonatti, E., Harrison, C. G. A., Fisher, D. E. et al., Easter volcanic chain (Southeast Pacific): a mantle hot line, JGR, 1977, 82: 2457.

    Article  Google Scholar 

  232. Armstrong, R. L., Hollister, V. F., Harakel, J. E., K−Ar dates for mineralization in the White Cloud-Cannivan porphyry molybdenum belt of Idaho and Montana, Economic Geology, 1978, 73: 94.

    Google Scholar 

  233. Tooker, E. W., Gold in the Butte District, Montana, Gold in Porphyry Copper System. U. S. Geological Survey Bulletin 1857E, 1990, E17–E27.

  234. Meyer, C., Ore deposits as guides to geologic history of the Earth, Annual Reviews Earth and Planetary Science, 1988, 16: 147.

    Article  Google Scholar 

  235. Hitzman, M. W., Oreskes, N., Einaudi, M. T., Geological characteristics and tectonic setting of Proterozoic iron oxide (Cu−U−Au-REE) deposits, Precambrian Research, 1992, 58: 241.

    Article  Google Scholar 

  236. Davidson, G. J., Large, R. D., Proterozoic copper-gold deposits, AGSO Journal of Australian Geology and Geophysics, 1998, 17: 105.

    Google Scholar 

  237. Williams, P. J., Metalliferous Economic Geology of the Mt Isa Eastern Succession, Queensland, Australian Journal of Earth Sciences, 1998, 45: 329.

    Article  Google Scholar 

  238. Oreskes, N., Einaudi, M. T., Origin of rare earth element-enriched hematite breccias at the Olympic Dam Cu−U−Au−Ag deposit, Roxby Downs, South Australia, Economic Geology, 1990, 85: 1.

    Google Scholar 

  239. Huhn, S. R. B., Nasceimento, J. A. S., Sao os depositas cupriferos de Carajas do Tipo Cu−Au−U-ETR, Contribuicoes a Geologia da Amazonia, 1998, 143–160.

  240. Lindemayer, Z. G., O deposito de Cu (AU−Mo) do Salobo, Serra Dos Carajas, Revisitado, Workshop Deposttus Minerair Brasilieiros de Metair-Base, 1998, 29–37.

  241. Ryan, P. J., Lawrence, A. L., Jenkins, R. A. et al., The Candelaria copper-gold deposit, Chile, Porphyry Copper Deposits of the American Cordillera, Arizona Geological Society Digest 20 (eds. Wahl-Pierce, F., Bolm, J. G.), 1995, 625–645.

  242. Dilles, J. H., Einaudi, M. T., Wall-rock alteration and hydrothermal flow paths about the Ann-Mason porphyry copper deposit, Nevada—a 6km vertical reconstruction, Economic Geology, 1992, 85: 1963.

    Google Scholar 

  243. Reeve, J. S., Cross, K. C., Smith, R. N. et al., The Olympic Dam copper-uranium-gold-silver deposit, South Australia, Geology of Mineral Deposits of Australia and Papua New Guinea: Australasian Institute Mining and Metallurgy Monograph 14 (ed. Hughes, F.), 1990, 1009–1035.

  244. Gow, P. A., Wall, V. J., Oliver, N. H. S. et al., Proterozoic iron-oxide (Cu−U−Au-REE) deposits: further evidence of hydrothermal origins, Geology, 1994, 22: 633.

    Article  Google Scholar 

  245. Mountain, B. W., Woods, S. A., Chemical controls on the solubility, transport and deposition of platinum and palladium in hydrothermal solutions: a thermodynamic approach, Economic Geology, 1989, 83: 492.

    Google Scholar 

  246. Philpotts, A. R., Origin of certain iron-titanium oxide and apatite rocks, Economic Geology, 1967, 62: 303.

    Google Scholar 

  247. Wyborn, L., Younger ca 1500 Ma granites of the Williams and Naraku Batholiths, Cloncurry District, eastern Mt Isa Inlier: geochemistry, origin, metallogenic significance and exploration indicators, Australian Journal of Earth Sciences, 1998, 45: 397.

    Article  Google Scholar 

  248. Barton, M. D., Johnson, D. A., Evaporitic-source model for igneous-related Fe-oxide-(REE-Cu−Au−U) mineralization Geology, 1996, 24: 259.

    Article  Google Scholar 

  249. Johnson, J. P., Cross, K. C., U−Pb geochronological constraints on the genesis of the Olympic Dam Cu−U−Au−Ag deposit, South Australia, Economic Geology, 1995, 90: 046.

    Google Scholar 

  250. Campbell, I. H., Compston, D. M., Richards, J. P. et al., Review of the application of isotopic studies to the genesis of Cu−Au mineralization at Olympic Dam and Au mineralization at Porgera, Tennant Creek district and Yilgaru Craton, Australian Journal of Earth Sciences, 1998, 45: 201.

    Article  Google Scholar 

  251. Vearncombe, S., Barley, M. E., Groves, D. I. et al., 3.26 Ga black smoker-type mineralization in the Strelley Belt, Pilbara Craton, Western Australia, Journal of the Geological Society of London, 1995, 152: 587.

    Article  Google Scholar 

  252. Franklin, J. M., Volcanic-associated massive sulfide deposits, Mineral Deposit Modeling, Geological Association of Canada Special Paper 40, 1993, 315–334.

  253. Franklin, J. M., Lydon, J. W., Sangster, D. F., Volcanic-associated massive sulfide deposits, Economic Geology 75th Anniversary Volume, 1981, 485–627.

  254. Lydon, J. W., Volcanogenic massive sulfide deposits: part 2, genetic models, Geoscience Canada, 1988, 15: 43.

    Google Scholar 

  255. Large, R. R., Huston, D. L., McGoldrick, P. J. et al., Gold distribution and genesis in Australian volcanogenic massive sulfide deposits and significance for gold transport models, Economic Geology Monography 6, 1989, 520–536.

    Google Scholar 

  256. Hannington, M. D., Scott, S. D., Sulfidation equilibria as guides to gold mineralization in volcanogenic massive sulfides: Evidence from sulfide mineralogy and the composition of sphalerite, Economic Geology, 1989, 84: 1978.

    Article  Google Scholar 

  257. Tourigny, G., Douget, D., Bourget, A., Geology of the Bousquet 2 mine An example of a deformed, gold-bearing polymetallic sulfide deposit, Economic Geology, 1993, 88: 1578.

    Google Scholar 

  258. Gibson, H. L., Watkinson, D. H., Comba, C. D. A., Silicification: Hydrothermal alteration in an Archean geothermal system within the Amulet rhyolite formation, Noranda, Quebec, Economic Geology, 1983, 78: 954.

    Google Scholar 

  259. Hodgson, C. J., Lydon, J. W., The geological setting of volcanogenic massive sulfide deposits and active hydrothermal systems: Some implications for exploration, Canadian Institute of Mining and Metallurgy Bulletin, 1977, 70: 95.

    Google Scholar 

  260. Hannington, M. D., Poulsen, K. H., Thompson, J. F. H. et al. Volcanogenic gold in the massive sulfide environment, in Volcanic-Associated Massive Sulfide Deposits: Processes and Examples in Modern and Ancient Settings (eds. Bbarrie, C. T., Hanningto, M. D.), Reviews in Economic Geology, 1999, 8: 319.

  261. Wyman, D. A., Kerrich, R., Fryer, B. J., Gold mineralization overprinting iron formation at the Agnico-Eagle deposit, Quebec, Canada: mineralogical, microstructural and geochemical evidence, Gold'86, An International Symposium on the Geology of Gold Deposits, 1986, 108–123.

  262. Hedenquist, J. W., Mineralization associated with volcanic-related hydrothermal systems in the circum-Pacific basin, 4th Forth Circum-Pacific Energy and Mineral Resources Conference, Singapore, 1986 (ed. Horn, M. K.), American Association of Petroleum Geologists, 1987, 513–524.

  263. Arribas, A., Jr., Characteristics of high-sulfidation epithermal deposits and their relation to magmatic fluid, Mineralogical Association of Canada Short Course Series, 1995, 23: 419.

    Google Scholar 

  264. Goodfellow, W. D., Lydon, J. W., Turner, R. J. W., Geology and genesis of stratiform sediment-hosted (SEDEX) zinc-lead-silver sulfide deposits, Mineral Deposit Modeling, Geological Association of Canada Special Paper 40, 1993, 201–254.

  265. Roth, T., Thompson, J. F. H., Barrett, J., The precious metal-rich Eskay Creek deposits, Northwestern British Columbia, Reviews in Economic Geology, 1998, 8: 367.

    Google Scholar 

  266. Sherlock, R. L., Roth, T., Spooner, E. T. C. et al., Origin of the Eskay Creek precious metal-rich volcanogenic massive sulfide deposit: Fluid inclusion and stable isotope evidence, Economic Geology, 1999, 94: 803.

    Article  Google Scholar 

  267. Ludden, J. N., Peloquin, S. A., A geodynamic model for the evolution of the Abitibi bel-implications for the origins of volcanic massive sulfide (VMS) deposits, Trace Element Geochemistry of Volcanic Rocks: Applications for Massive Sulfide Exploration (ed. Wyman D. A.), GAC Short Course Notes, 1996, 12: 205.

  268. Wyman, D. A., Kerrich, R., Groves, D. I., Lode gold deposits and Archean mantle plume-island arc interaction, Abitibi subprovince, Canada, Journal of Geology, 1999, 107: 715.

    Article  Google Scholar 

  269. Stern, R. A., Syme, E. C., Lucas, S. B., Geochemistry of 1.9 Ga MORB- and OIB-like basalts from the Amisk collage, Flin Flon Belt, Canada: Evidence for an intra-oceanic origin, GCA, 1995, 59: 3131.

    Google Scholar 

  270. Syme, E. C., Bailes, A. H., Stern, R. A. et al., Geochemical characteristics of 1.9 Ga tectonostratigraphic assemblages and tectonic setting of massive sulfide deposits in the Paleoproterozoic Flin Flon Belt, Canada, Trace Element Geochemistry of Volcanic Rocks: Applications for Massive Sulfide Exploration (ed. Wyman D. A.), GAC Short Course Notes, 1996, 12: 279.

  271. Allen, R. I., Weihed, P., Svenson, S. A., Setting of Zn−Cu−Au−Ag sulfide deposits in the evolution and facies architecture of a 1.9 Ga marine volcanic arc, Skellefte district, Sweden, Economic Geology, 1997, 91: 1022.

    Google Scholar 

  272. Lentz, D. R., Petrology, geochemistry, and oxygen isotope interpretation of felsic volcanic and related rocks hosting the Brunswick 6 and 12 massive sulfide deposits (Brunswick Belt), Bathurst mining camp, New Brunswick, Canada, Economic Geology, 1999, 94: 57.

    Google Scholar 

  273. Boulter, C. A., Comparison of Rio Tinto, Spain, and Guaymas basin, Gulf of California: An explanation of a supergiant massive sulfide deposits in an ancient sill-sediment complex, Geology, 1993, 21: 801.

    Article  Google Scholar 

  274. Moores, E. M., Twiss, R. J., Tectonics, New York: Freeman, W.H., and Company, 1995, 425.

    Google Scholar 

  275. Cloos, M., Lithosphere buoyancy and collisional orogenesis: subduction of oceanic plateau, continental margins, island arcs, spreading ridges, and seamounts, Geological Society of America Bulletin, 1993, 105: 715.

    Article  Google Scholar 

  276. Abbott, D. H., Plumes and hotspots as sources of greenstone belts, Lithos, 1996, 37: 113.

    Article  Google Scholar 

  277. Hofmann, A. W., Mantle geochemistry: the message from oceanic volcanism, Nature, 1997, 385: 219.

    Article  Google Scholar 

  278. Polat, A., Kerrich, R., Wyman, D. A., Geochemical diversity in oceanic komatiites and basalts from the late Archean Wawa greenstone belts, Superior Province, Canada: trace element and Nd isotope evidence for a heterogeneous mantle, Precambrian Research, 1999, 94: 139.

    Article  Google Scholar 

  279. Polat, A., Kerrich, R., Formation of an Archean tectonics melange in the Schreiber-Hemlo greenstone belt, Superior Province, Canada: Implications for Archean subduction-accretion process, Tectonics, 1999, 18: 733.

    Article  Google Scholar 

  280. Taylor, S. R., McLennan, S. M., The Continental Crust: its Composition and Evolution, Blackwell, Oxford, 312.

  281. Rudnick, R. L., 1995, Making continental crust, Nature, 1985, 378, 571–578.

    Google Scholar 

  282. Isley, A. E., Abbott, D. H., Plume-related mafic volcanism and the deposition of banded iron formation, JGR, 1999, 104: 461.

    Article  Google Scholar 

  283. Fyfe, W. S., The evolution of Earth's crust: modern plate tectonics to ancient hot spot tectonics?, Chemical Geology, 1978, 23: 89.

    Article  Google Scholar 

  284. Armstrong, R. L., Radiogenic isotopes: the case study for crustal recycling on a near steady state non-continental growth Earth, Philosophical Transactions of the Royal Society of London, 1981, 301: 472.

    Article  Google Scholar 

  285. Von Huene, R., Scholl, D. W., Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust, Reviews of Geophysics, 1991, 29: 279.

    Article  Google Scholar 

  286. White, W. M., Duncan, R. A., Geochemistry and geochronology of the Society island: new evidence for feep mantle recycling, earth processes, Reading the Isotopic Code, Geophysical Monograph 95, 1996, 1.

  287. Kerrich, R., Wyman, D., Hollings, P. et al., Variability of Nb/U and Th/La in 3.0 to 2.7 Ga Superior Province ocean plateau basalts: implications for the timing of continental growth and lithosphere recycling. EPSL, 1999, 168: 101.

    Article  Google Scholar 

  288. Dalziel, I. W. D., Lawyer, L. A., Murphy, J. B., Plumes, orogenesis, and supercontinental fragmentation, EPSL, 2000, 178: 1.

    Article  Google Scholar 

  289. Halliday, A., Lee, D. C., Tungsten isotopes and the early development of the Earth and Moon, GCA, 1999, 63: 4157.

    Google Scholar 

  290. Taylor, S. R., The origin of the earth, Understanding the Earth (eds. Brown, G., Hawkesworth, C., Wilson, C.), London: Cambridge University Press, 1992, 25–43.

    Google Scholar 

  291. Qiu, Y., Groves, D. I., Late Archean collision and delamination in the southwest Yilgarn craton: The driving force for Archean orogenic lode gold mineralization?, Economic Geology, 1999, 94: 115.

    Google Scholar 

  292. Barnes, H. I., Solubities of ore minerals, Geochemistry of Hydrothermal Ore Deposits (ed. Barnes, H. L.), New York: Wiley, 1979, 404–460.

    Google Scholar 

  293. Craw, D., Koons, P. O., Tectonically-induced hydrothermal activity and gold mineralization adjacent to major fault zones, Economic Geology Monograph 6, 1989, 463–470.

    Google Scholar 

  294. Chen, Y. J., Guo, G. J., Li, X., Metallogenic geodynamic background of gold deposits in Granite-greenstone terrains of North China craton, Science in China, Ser. D, 1998, 41(2): 113.

    Google Scholar 

  295. Tarney, J., Pickering, K. T., Dewey, J. F. (Eds.), The Behaviour and Influence of Fluids in Subduction Zones, London: The Royal Society, 1991, 392.

    Google Scholar 

  296. Wright, I. C., Ronde, C. E. J., Faure, K. et al., Discovery of hydrothermal sulfide mineralization from southern Kermadec arc volcanoes (SW Pacific), EPSL, 1998, 164: 335.

    Article  Google Scholar 

  297. Rona, P. A., Scott, S. D., A special issue on sea-floor hydrothermal mineralization: New perspectives, Preface, Economic Geology, 1993, 88: 1935.

    Google Scholar 

  298. Binns, R. A., Scott, S. D., Bogdanov, Y. A. et al., Hydrothermal oxide and gold-rich sulfate deposits of Franklin seamount, Western Woodlark basin, Papua New Guinea, Economic Geology, 1993, 88: 2122.

    Google Scholar 

  299. Fouquet, Y., von Stackelberg, U., Charlou, J. L. et al., Metallogenesis in back-are environments: the Lau basin example, Economic Geology, 1993, 88: 2154.

    Google Scholar 

  300. Herzig, P., Hannington, M. D., Fouquet, Y. et al., Gold-rich polymetallic sulfide from the Lau back arc and implications for the geochemistry of gold in sea-floor hydrothermal systems of the southwest Pacific. Economic Geology, 1993, 88: 2182.

    Google Scholar 

  301. Binns, R. A., Scott, S. D., Actively forming polymetallic sulfide deposits associated with felsic volcanic rocks in the eastern Manus back-arc basin, Papua New Guiena, Economic Geology, 1993, 88: 2226.

    Google Scholar 

  302. Hallbach, P., Pracejus, B., Marten, A., Geology and mineralogy of massive ore from the central Okinawa trough, Japan, Economic Geology, 1993, 88: 2210.

    Google Scholar 

  303. Taylor, B., Preface, Backarc Basin (ed. Taylor, B.), New York: Plenum Press, 1995, ix-xi.

    Google Scholar 

  304. Pearce, J. A., Peate, D. W., Tectonic implications of the composition of volcanic arc magmas, Annual Review Earth Planetary Science, Special Publication, 1995, 76: 373.

    Google Scholar 

  305. McInnes, B. I. A., McBride, J. S., Evans, N. J.,et al., Osmium isotope constraints on ore metal recycling in subduction zones, Science, 1999, 286: 512.

    Article  Google Scholar 

  306. Mathur, R., Ruiz, J., Munizaga, F., Relationship between copper tonnage of Chilean base-metal porphyry deposits and Os isotope ratios, Geology, 2000, 28: 555.

    Article  Google Scholar 

  307. Hoffman, P. F., Precambrian geology and tectonic history of North America, The Geology of North America (eds. Bally, A. W., Palmer, A. R.), 1989, 447–512.

  308. Windley, B. F., The Evolving Continents, New York: John Wiley, 1995, 526.

    Google Scholar 

  309. Menzies, M. A., Rogers, N., Tindle, A., et al., Metasomatic and enrichment processes in lithosphere peridotites, an effect of asthenosphere-lithosphere interaction, Mantle Metasomatism (eds. Menzies, M. A., Hawkesworth, C. J.), London: Harcourt Brace Jovanovich, 1978, 313–364.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Robert Kerrich or Yiefei Jia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kerrich, R., Goldfarb, R., Groves, D. et al. The characteristics, origins, and geodynamic settings of supergiant gold metallogenic provinces. Sci. China Ser. D-Earth Sci. 43 (Suppl 1), 1–68 (2000). https://doi.org/10.1007/BF02911933

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02911933

Keywords

Navigation