Skip to main content
Log in

On laboratory bioassays in allelopathy

  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

Allelopathy involves the complex chain of chemical communications among plants, including microbes. Laboratory bioassays constitute a significant part of allelopathic research, and various bioassays have been proposed to demonstrate allelopathy under controlled lab conditions. However, many lab bioassays have little or no correspondence to field interaction, which may be due to dissimilarity of the conditions of lab bioassay to natural conditions, lack of standardized techniques, or absence of critical controls. Here we discuss several lab bioassays presently used in allelopathic research for their suitability to demonstrate allelopathy of ecological relevance. We recommend avoiding certain practices, such as grinding plant material to evaluate allelopathic potential and isolation of allelochemicals, using seed germination as the only criterion of growth response, using sand, agar, or autoclaved soil, using organic solvents as extractants in allelopathic bioassays, and eliminating microbial involvement. Care should be taken in the lab to simulate natural conditions and attention should be given to habit, habitat, and life cycle pattern of the allelopathic plants during designing of lab bioassays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Aldrich, R. J. 1984. Weed-crop ecology: Principles in weed management. Breton Publishers, MA.

    Google Scholar 

  • Alsaadawi, I. S., M. B. Arif &A. A. Alrubeaa. 1985. Allelopathic effects ofCitrus aurantium L. Isolation, characterisation, and biological activities of phytotoxins. J. Chem. Ecol.11: 1527–1534.

    Article  CAS  Google Scholar 

  • Anaya A. L., M. R. Calera &R. Pereda-Miranda. 1990. Allelopathic potential of compounds isolated fromIpomoea tricolor CAV (Convolvulaceae). J. Chem. Ecol.16:2145–2152.

    Article  CAS  Google Scholar 

  • Anderson R. C. &O. L. Louchs. 1986. Osmotic influence in germination test for antibiosis. Science152: 771–773.

    Article  Google Scholar 

  • Barkosky, R. R. &F. A. Einhellig. 1993. Effect of salicylic acid on plant-water relationships. J. Chem. Ecol.19: 237–247.

    Article  CAS  Google Scholar 

  • Barnes, J. P. &A. R. Putnam. 1983. Rye residues contribute weed suppression in no-tillage cropping systems. J. Chem. Ecol.9: 1045–1057.

    Article  Google Scholar 

  • Bell, D. T. &D. E. Koeppe. 1972. Noncompetitive effects of giant foxtail on the growth of corn. Agron. J.64: 321–325.

    Google Scholar 

  • Bergmark, C. L., W. A. Jackson, R. J. Volk &U. Blum. 1992. Differential inhibition by ferulic acid of nitrate and ammonium uptake inZea mays L. Pl. Physiol.98: 639–645.

    CAS  Google Scholar 

  • Bhowmik, P. C. &J. D. Doll. 1984. Allelopathic effects of annual weed residue on growth and nutrient uptake of corn and soybean. Agron. J.76: 383–388.

    Google Scholar 

  • Bieber, G. L. &C. S. Hoveland. 1968. Phytotoxicity of plant material on seed germination of crownvetch,Coronilla varia L. Agron. J.60: 185–188.

    Google Scholar 

  • Blum, U. &S. R. Shafer. 1988. Microbial population and phenolic acids in soil. Soil Biol. Biochem.20: 793–800.

    Article  CAS  Google Scholar 

  • —,S. B. Weed &B. R. Dalton. 1987. Influence of various soil factors on the effects of ferulic acid on leaf expression of cucumber seedlings. Pl. & Soil98: 111–130.

    Article  CAS  Google Scholar 

  • —,A. D. Worsham, L. D. King &T. M. Gerig. 1994. Use of water and EDTA extraction to estimate available (free and reversibly bound) phenolic acids in cecil soils. J. Chem. Ecol.20: 341–359.

    Article  CAS  Google Scholar 

  • Booker, F. L., U. Blum &E. L. Fiscus. 1992. Short-term effects of ferulic acid on ion uptake and water relations in cucumber seedlings. J. Exp. Bot.93: 649–655.

    Article  Google Scholar 

  • Brede, A. D. 1991. Field apparatus for testing allelopathy of annual bluegrass on creeping beutgrass. Crop Sci.31: 1372–1374.

    Google Scholar 

  • Chang, C. S., A. Suzuki, S. Kumai &S. Tamura. 1969. Chemical studies on ‘clover sickness’. Part II. Biological functions of isoflavonoids and their relateds. Agric. Biol. Chem.33: 398–408.

    CAS  Google Scholar 

  • Chapman, S. J. &J. M. Lynch. 1983. The relative roles of microorganisms and their metabolites in the phytotoxicity of decomposing plant residues. Pl. & Soil74: 457–459.

    Article  Google Scholar 

  • Chase, W. R., M. G. Nair &A. R. Putnam. 1991a. 2,2′-oxo-1,1′-azobenzene: Selective toxicity of rye (Secale cereale L.) allelochemicals to weed and crop species II. J. Chem. Ecol.17: 9–19.

    Article  CAS  Google Scholar 

  • ——— &S. K. Mishra. 1991b. 2,2′-oxo-1,1′-azobenzene microbial transformation of rye (Secale cereale L.) allelochemical in field soils byAcinetobactor calcoaceticus: III. J. Chem. Ecol.17: 1575–1584.

    Article  CAS  Google Scholar 

  • Cheng, H. H. 1992. A conceptual framework for assessing allelochemicals in soil environment. Pages 21–29in S. J. H. Rizvi & V. Rizvi (eds.) Allelopathy: basic and applied aspects. Chapman and Hall, London.

    Google Scholar 

  • Choesin, D. N. &R. E. Boerner. 1991. Allyl isothiocyanate release and the allelopathic potential ofBrassica napus (Brassicaceae). Amer. J. Bot.78: 1083–1090.

    Article  CAS  Google Scholar 

  • Chou, C. H. &C. H. Muller. 1972. Allelopathic mechanisms ofArctostaphylos glandulosa var.zacaensis. Amer. Midl. Naturalist88: 324–347.

    Article  CAS  Google Scholar 

  • Cochran, V. L., L. F. Elliott &R. I. Papendick. 1977. The production of phytotoxins from surface crop residues. Soil Sci. Soc. Amer. Proc.41: 903–908.

    Google Scholar 

  • Cope, W. A. 1982. Inhibition of germination and seedling growth of eight forage species by leachates from seeds. Crop Sci.22: 1109–1111.

    Google Scholar 

  • Cutler, H. G. 1986. Isolating, characterising and screening mycotoxins for herbicidal activity. Pages 147–170in A. R. Putnam & C. S. Tang (eds.), The science of allelopathy. John Wiley, New York.

    Google Scholar 

  • Dalton, B. R., U. Blum &S. B. Weed 1983. Allelopathic substances in ecosystems: Effectiveness of sterile soil component in altering recovery of ferulic acid. J. Chem. Ecol.9: 1185–1201.

    Article  CAS  Google Scholar 

  • ——— 1989a. Plant phenolic acids in soils: Sorption of ferulic acid by soil and soil component sterilized by different techniques. Soil Biol. Biochem.21: 1011–1018.

    Article  CAS  Google Scholar 

  • ——— 1989b. Differential sorption of exogenously applied ferulic, p-coumaric, p-hydroxybenzoic and vanillic acids in the soil. Soil Sci. Soc. Amer. J.53: 757–762.

    CAS  Google Scholar 

  • DeFrank, J. &A. R. Putnam. 1985. Screening procedure to identify soil-borne actinomycetes that can produce herbicidal compounds. Weed Sci.33: 271–274.

    Google Scholar 

  • Dekker, J. H., W. F. Meggitt &A. R. Putnam. 1983. Experimental methodologies to evaluate allelopathic plant interaction. TheAbutilon theophrasti-Glycine max model. J. Chem. Ecol.9: 945–982.

    Article  Google Scholar 

  • Del Moral, R. &R. G. Cates. 1971. Allelopathic potential of the dominant vegetation of western Washington. Ecology52: 1030–1037.

    Article  Google Scholar 

  • — &C. H. Muller. 1969. Fog drip: A mechanism of toxin transport fromEucalyptus globulus. Bull. Torrey Bot. Club96: 467–475.

    Article  Google Scholar 

  • ——. 1970. Allelopathic effects ofEucalyptus camaldulensis. Amer. Midl. Naturalist83: 254–282.

    Article  Google Scholar 

  • —,R. J. Willis &D. H. Ashton. 1978. Suppression of coastal health vegetation byEucalyptus baxteri. Austral. J. Bot.26: 203–220.

    Article  Google Scholar 

  • Devi, S. R. &M. N. V. Prasad. 1992. Effect of ferulic acid on growth and hydrolytic enzyme activities of germinating maize seeds. J. Chem. Ecol.18: 1981–1990.

    Article  CAS  Google Scholar 

  • Dornbos, D. L. Jr. &G. F. Spencer. 1990. Natural products phytotoxicity: A bioassay suitable for small quantities of slightly water-soluble compounds. J. Chem. Ecol.16: 339–352.

    Article  CAS  Google Scholar 

  • Drew, R. I. K. &P. A. Brockleurst. 1990. Effects of temperature of mother-plant environment on yield and germination of seeds of lettuce (Lactuca sativa). Ann. Bot.66: 63–71.

    Google Scholar 

  • Duke, S. O., R. D. Williams &A. H. I. Markhart III. 1983. Interaction of moisture stress and three phenolic compounds on lettuce seed germination. Ann. Bot.52: 923–926.

    CAS  Google Scholar 

  • Einhellig, F. A. &J. A. Rasmussen. 1978. Synergistic inhibitory effects of vanillic and p-hydroxybenzoic acids on radish and grain sorghum. J. Chem. Ecol.4: 425–436.

    Article  CAS  Google Scholar 

  • ——. 1993. Effect of root exudate sorgoleone on photosynthesis. J. Chem. Ecol.19: 369–375.

    Article  CAS  Google Scholar 

  • —,G. R. Leather &L. L. Hobbs. 1985. Use ofLemna minor L. as bioassay in allelopathy. J. Chem. Ecol.11: 65–72.

    Article  CAS  Google Scholar 

  • El-Deek, M. H. &F. D. Hess. 1986. Inhibited mitotic entry is the cause of growth inhibition by cinmethylin. Weed Sci.34: 684–688.

    Google Scholar 

  • Evenari, M. 1949. Germination inhibitors. Bot. Rev.15: 153–194.

    Article  Google Scholar 

  • Fischer, N. H. 1986. The function of mono- and sesquiterpenes as plant germination and growth regulators. Pages 203–218.in A. R. Putnam & C. S. Tang (eds.) The science of allelopathy. John Wiley, New York.

    Google Scholar 

  • Fisher, R. F. 1979. Allelopathy. Pages 313–330in J. G. Horsfall & E. B. Cowling (eds.), Plant disease: An advanced treatise. Academic Press, New York.

    Google Scholar 

  • Forcella, F. 1993. Seedling emergence model for velvet leaf. Agron. J.85: 929–933.

    Google Scholar 

  • Gagliardo, R. W. &W. S. Chilton. 1992. Soil transformation of 2(3H)-benzoxazolone of rye into phytotoxic 2-amino-3H-phenoxazin-3-one. J. Chem. Ecol.18: 1683–1691.

    Article  CAS  Google Scholar 

  • Glass, A. D. M. &B. A. Bohm. 1971. The uptake of simple phenols by barley roots. Planta100: 93–105.

    Article  CAS  Google Scholar 

  • Grakhov, V. P., V. G. Kozeko &E. A. Golovko. 1993. Modelling of allelopathic interactions in laboratory tests. Ukrajins’k. Bot. Žurn.50: 86–93.

    Google Scholar 

  • Guenzi, W. D. &T. M. McCalla. 1962. Inhibition of seed germination and seedling development by crop residues. Soil Sci. Soc. Amer. Proc.26: 456–458.

    CAS  Google Scholar 

  • Hall, A. B., U. Blum &R. C. Fites. 1982. Stress modification of allelopathy ofHelianthus annuus L. debris on seed germination. Amer. J. Bot.69: 776–783.

    Article  Google Scholar 

  • Harborne, J. B. 1987. Chemical signals in the ecosystems. Ann. Bot.60 (Suppl.): 39–57.

    CAS  Google Scholar 

  • Harrison, H. F. Jr. &J. K. Peterson. 1991. Evidence that sweet potato (Ipomoea batatas) is allelopathic to yellow nutsedge (Cyperus esculentus). Weed Sci.39: 308–312.

    Google Scholar 

  • Heisey, R. M. 1990. Evidence for allelopathy by tree-of-heaven (Ailanthus altissima). J. Chem. Ecol.16: 2039–2055.

    Article  CAS  Google Scholar 

  • — &C. C. Delwiche. 1985. Allelopathic effects ofTrichostema lanceolatum (Labiatae). J. Ecol.73: 729–742.

    Article  Google Scholar 

  • Hejl, A. M., F. A. Einhellig &J. A. Rasmussen. 1993. Effect of juglone on growth, photosynthesis and respiration. J. Chem. Ecol.19: 559–568.

    Article  CAS  Google Scholar 

  • Henderson, M. E. K. 1956. A study of metabolism of phenolic compound by soil fungi using spore suspensions. J. Gen. Microbiol.14: 684–691.

    PubMed  CAS  Google Scholar 

  • Horsley, S. B. 1986. Evaluation of hayscanted fern interference with black cherry. Amer. J. Bot.73: 668–669.

    Google Scholar 

  • — 1991. Allelopathy. Pages 167–183in M. E. Avery, G. R. Cannell & C. K. Ong (eds.), Biophysical research for Asian agroforestry. Winrock International, Arlington, Virginia; South Asia Books, USA.

    Google Scholar 

  • Huang, P. M., T. S. C. Wang, M. K. Wang, M. H. Wu &N. Hsu. 1977. Retention of phenolic acids by non-crystalline hydroxy-aluminium and iron compounds and clay minerals of soils. Soil Sci.123: 213–219.

    Article  CAS  Google Scholar 

  • Inderjit &K. M. M. Dakshini. 1990. The nature of interference potential ofPluchea lanceolata (DC.) C. B. Clarke (Asteraceae). Pl. Soil122: 298–302.

    Article  Google Scholar 

  • ——. 1991a. Investigations on some aspects of chemical ecology of cogongrass,Imperata cylindrica (L.) Beauv. J. Chem. Ecol.17: 343–352.

    Article  CAS  Google Scholar 

  • ——. 1991b. Hesperetin 7-rutinoside (hesperidin) and taxifolin 3-arabinoside as germination and growth inhibitors in soils associated with the weedPluchea lanceolata (DC.) C. B. Clarke (Asteraceae). J. Chem. Ecol.17: 1585–1591.

    Article  CAS  Google Scholar 

  • ——. 1992a. Formononetin 7-O-glucoside (ononin), an additional growth inhibitor in soils associated with the weed,Pluchea lanceolata (DC.) C. B. Clarke (Asteraceae). J. Chem. Ecol.18: 713–718.

    Article  CAS  Google Scholar 

  • ——. 1992b. Interference potential of the weedPluchea lanceolata (Asteraceae): Growth and physiological responses of asparagus bean,Vigna unguiculata var.sesquipedalis. Amer. J. Bot.79: 977–981.

    Article  Google Scholar 

  • ——. 1994a. Effect of cultivation on allelopathic interference success of the weedPluchea lanceolata. J. Chem. Ecol.20: 1179–1188.

    Article  CAS  Google Scholar 

  • ——. 1994b. Algal allelopathy. Bot. Rev.60: 182–196.

    Article  Google Scholar 

  • ——. 1994c. Allelopathic effects ofPluchea lanceolata on characteristics of four soils and growth of mustard and tomato. Amer. J. Bot.81: 799–804.

    Article  Google Scholar 

  • Jackson, J. R. &R. W. Willemson. 1976. Allelopathy in the first stages of succession on the Piedmont of New Jersey. Amer. J. Bot.63: 1015–1023.

    Article  CAS  Google Scholar 

  • Kaminsky, R. 1981. The microbial origin of the allelopathic potential ofAdenostoma fasciculatum H. & A. Ecol. Monogr.51: 365–382.

    Article  CAS  Google Scholar 

  • Kanchan, S. D. &Jayachandra. 1979. Allelopathic effects ofParthenium hysterophorus L. I. Exudation of inhibitors through roots. Pl. & Soil53: 27–35.

    Article  Google Scholar 

  • Katz, D. A., B. Sneh &J. Friedman. 1987. The allelopathic potential ofCoridothymus capitatus L. (Labiatae). Preliminary studies on the roles of the shrub in the inhibition of annuals germination and/or to promote allelopathically active actinomycetes. Pl. & Soil98: 53–66.

    Article  Google Scholar 

  • Kimber, R. W. L. 1973. Phytotoxicity from plant residues. II. The effects of time of rotting of straw from grasses and legumes on the growth of wheat seedlings. Pl. & Soil38: 347–361.

    Article  Google Scholar 

  • Kovacic, D. A., T. V. St. John &M. I. Dyer. 1984. Lack of vascular-arbuscular mycorrhizal inoculum in a Ponderosa pine forest. Ecology65: 1755–1759.

    Article  Google Scholar 

  • Lawrey, J. D. 1993. Chemical ecology ofHobsonis christiansenii, a lichencolous hypomycetes. Amer. J. Bot.80: 1109–1113.

    Article  CAS  Google Scholar 

  • Leather, G. R. &F. A. Einhellig. 1985. Mechanisms of allelopathic action in bioassay. Pages 197–205in A. C. Thompson (ed.), The chemistry of allelopathy biochemical interaction among plants. ACS Symposium series no. 268. American Chemical Society, Washington, DC.

    Google Scholar 

  • ——. 1986. Bioassays in the study of allelopathy. Pages 133–145in A. R. Putnam & C. S. Tang (eds.), The science of allelopathy. John Wiley, New York.

    Google Scholar 

  • ——. 1988. Bioassay in naturally occurring allelochemicals for phytotoxicity. J. Chem. Ecol.14: 1821–1828.

    Article  Google Scholar 

  • Lehman, R. H. &E. L. Rice. 1972. Effects of deficiencies of nitrogen, potassium and sulfur on chlorogenic acid and scopoletin in sunflower. Amer. Midl. Naturalist87: 71–80.

    Article  CAS  Google Scholar 

  • Levin, D. A. 1971. Plant phenolics: An ecological perspective. Amer. Naturalist105: 157–181.

    Article  CAS  Google Scholar 

  • Liebl, R. A. &A. D. Worsham. 1983. Inhibition of pitted morning glory (Ipomoea lacunosa L.) and certain other weed species by phytotoxic components of wheat (Triticum aestivum L.) straw. J. Chem. Ecol.9: 1027–1043.

    Article  CAS  Google Scholar 

  • Linderman, R. G. &R. G. Gilbert. 1969. Stimulation ofSclerotium rolfsii in soil by volatile components of alfalfa hay. Phytopathology59: 1366–1372.

    CAS  Google Scholar 

  • Lodhi, M. A. K. 1975. Soil-plant phytotoxicity and its possible significance in patterning of herbaceous vegetation in a bottomland forest. Amer. J. Bot.62: 618–622.

    Article  CAS  Google Scholar 

  • — 1976. Role of allelopathy as expressed by dominating trees in lowland forest in controlling productivity and pattern of herbaceous growth. Amer. J. Bot.63: 1–8.

    Article  CAS  Google Scholar 

  • — 1978. Allelopathic effects of decaying litter of dominant trees and their associated soil in lowland forest community. Amer. J. Bot.65: 340–344.

    Article  CAS  Google Scholar 

  • — &G. L. Nickell. 1973. Effects of leaf extracts ofCeltis laevigata on growth, water content and carbon exchange rate of three grass species. Bull. Torrey Bot. Club100: 159–165.

    Article  CAS  Google Scholar 

  • Lovett, J. V. &A. M. Duffield. 1981. Allelochemicals ofCamelina sativa J. Appl. Ecol.18: 283–290.

    Article  CAS  Google Scholar 

  • — &G. R. Sagar. 1978. Influence of bacteria in phyllosphere ofCamelina sativa (L.) Crantz. New Phytol.81: 617–625.

    Article  Google Scholar 

  • Macleod, N. J. &J. B. Pridham. 1965. Observations on the translocation of phenolic compounds. Phytochemistry5: 777–781.

    Article  Google Scholar 

  • Martin, J. P. &K. Haider. 1976. Decomposition of specially carbon-14-labelled ferulic acid: Free and linked into humic acid type polymer. Soil Sci. Soc. Amer. Proc.40: 377–380.

    CAS  Google Scholar 

  • —— &D. Wolf. 1972. Synthesis of phenol and phenolic polymer byHendrosonula toruloidea in relation to humic acid formation. Soil Sci. Soc. Amer. Proc.36: 311–315.

    CAS  Google Scholar 

  • May, F. E. &J. E. Ash 1990. An assessment of allelopathic potential ofEucalyptus. Austral. J. Bot.38: 245–254.

    Article  Google Scholar 

  • McCahon, C. B., R. G. Kelsey, R. P. Sheridan &F. Shafizadah. 1973. Physiological effects of compounds extracted from sagebrush. Bull. Torrey Bot. Club100: 23–28.

    Article  CAS  Google Scholar 

  • McPherson, J. K. &C. H. Muller. 1969. Allelopathic effects ofAdenostoma fasciculatum ‘chamise’, in the California chaparral. Ecol. Monogr.39: 177–198.

    Article  Google Scholar 

  • —,C. H. Chou &C. H. Muller. 1971. Allelopathic constituents of the chaparral shrubAdenostoma fasciculatum. Phytochemistry10: 2925–2933.

    Article  CAS  Google Scholar 

  • Mersie, W. &M. Singh. 1987. Allelopathic effects of lantana on some agronomic crops and weeds. Pl. & Soil98: 25–30.

    Article  Google Scholar 

  • ——. 1988. Effects of phenolic acids and ragweed Parthenium (Parthenium hysterophorus) extracts on tomato (Lycopersicon esculentum) growth and nutrient and chlorophyll content. Weed Sci.36: 278–281.

    CAS  Google Scholar 

  • Muller, C. H. 1953. The association of desert annuals with shrubs. Amer. J. Bot.40: 53–60.

    Article  Google Scholar 

  • — 1966. The role of chemical inhibition (allelopathy) in vegetational composition. Bull. Torrey Bot. Club93: 332–351.

    Article  CAS  Google Scholar 

  • — 1969. Allelopathy as a factor in ecological processes. Vegetatio18: 348–357.

    Article  Google Scholar 

  • — &R. Del Moral. 1966. Soil toxicity induced by terpenes fromSalvia leucophylla. Bull. Torrey Bot. Club93: 130–137.

    Article  CAS  Google Scholar 

  • Muller, W. H. &C. H. Muller. 1956. Association patterns involving desert plants that contain toxic products. Amer. J. Bot.43: 354–361.

    Article  CAS  Google Scholar 

  • Nair, M. G., C. J. Whitenack &A. R. Putnam. 1990. 2, 2′-oxo-1, 1′-azobenzene, a microbially transformed allelochemical from 2,3-benzoxazolinone: I. J. Chem. Ecol.16: 353–364.

    Article  CAS  Google Scholar 

  • Newman, E. I. 1982. The possible relevance of allelopathy to agriculture. Pestic. Sci.13: 575–582.

    Article  CAS  Google Scholar 

  • Norstadt, F. A. &T. M. McCalla. 1963. Phytotoxic substance from a species ofPenicillium. Science140: 410–411.

    Article  PubMed  CAS  Google Scholar 

  • Oleszek, W. &M. Jurzysta. 1987. The allelopathic potential of alfalfa root medicagenic acid glycosides and their fate in soil environments. Pl. & Soil98: 67–80.

    Article  CAS  Google Scholar 

  • Olsen, R. A., G. Odham &G. Linderberg. 1971. Aromatic substances in leaves ofPopulus tremula as inhibitors of mycorrhizal fungi. Physiol. Pl.25: 122–129.

    Article  CAS  Google Scholar 

  • Parenti, R. L. &E. L. Rice. 1969. Inhibitional effects ofDigitaria sanguinalis and possible role in old field succession. Bull. Torrey Bot. Club96: 70–78.

    Article  CAS  Google Scholar 

  • Patrick, Z. A. &L. W. Koch. 1963. The adverse influence of phytotoxic substances from decomposing plant residues on resistance of tobacco to black root rot. Canad. J. Bot.41: 747–758.

    Article  CAS  Google Scholar 

  • Patterson, D. T. 1981. Effects of allelopathic chemicals on growth and physiological responses of soybean (Glycine max). Weed Sci.29: 53–59.

    CAS  Google Scholar 

  • Pederson, G. A. 1986. White clover seed germination in agar containing tall fescue leaf extracts. Crop Sci.26: 1248–1249.

    Google Scholar 

  • Perez, F. J. &J. Ormeno-Nunez. 1991. Root exudates of wild oats: Allelopathic effects on spring wheat. Phytochemistry30: 2199–2202.

    Article  CAS  Google Scholar 

  • Persidsky, D. J., H. Loewenstein &S. A. Wilde. 1965. Effect of extracts of prairie soils and prairie grass roots on the respiration of ectotrophic mycorrhizae. Agron. J.57: 311–312.

    CAS  Google Scholar 

  • Ponder, F. Jr. &S. H. Tadros. 1985. Juglone concentration in soil beneath black walnut interpreted with nitrogen-fixing species. J. Chem. Ecol.11: 937–942.

    Article  CAS  Google Scholar 

  • Putnam, A. R. 1985. Weed allelopathy. Pages 132–155in S. O. Duke (ed.), Weed physiology. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • —. 1978. Allelopathy in agrosystems. Annual Rev. Phytopathol.16: 431–451.

    Article  Google Scholar 

  • —. 1986. Allelopathy: state of science. Pages 1–19in A. R. Putnam & C. S. Tang (eds.), The science of allelopathy. John Wiley, New York.

    Google Scholar 

  • —. 1986. Adverse impacts of allelopathy in agricultural systems. Pages 43–56in A. R. Putnam & C. S. Tang (eds.), The science of allelopathy. John Wiley, New York.

    Google Scholar 

  • Rasmussen, J. A. &F. A. Einhellig. 1977. Synergistic inhibitory effects of p-coumaric and ferulic acids on germination and growth of grain sorghum. J. Chem. Ecol.3: 197–205.

    Article  CAS  Google Scholar 

  • Reese, J. C. 1979. Interaction of allelochemicals with nutrients in herbivore foods. Pages 309–330in G. P. Rosenthal & D. H. Janzen (eds.), Herbivores: Their interaction with secondary plant metabolites. Academic Press, New York.

    Google Scholar 

  • Reynolds, T. 1975. Characterisation of osmotic restraints on lettuce fruit germination. Ann. Bot.39: 791–796.

    Google Scholar 

  • Rice, E. L. 1984. Allelopathy. Academic Press, Orlando, Florida.

    Google Scholar 

  • — 1986. Allelopathic growth stimulation. Pages 23–42in A. R. Putnam & C. S. Tang (eds.), The science of allelopathy. John Wiley, New York.

    Google Scholar 

  • Rietveld, W. J., R. C. Schlesinger &K. J. Kessler, Jr. 1983. Allelopathic effects of black walnut on European black alder coplanted as a nurse species. J. Chem. Ecol.9: 1119–1133.

    Article  Google Scholar 

  • Robinson, R. K. 1972. The production by roots ofCalluna vulgaris of a factor inhibitory to growth of some mycorrhizal fern. J. Ecol.60: 219–224.

    Article  Google Scholar 

  • Rose, S. L., D. A. Perry, D. Pilz &M. M. Schoneberger. 1983. Allelopathic effects of litter on the growth and colonization of mycorrhizal fungi. J. Chem. Ecol.9: 1153–1162.

    Article  Google Scholar 

  • Schmidt, S. K. 1988. Degradation of juglone by soil bacteria. J. Chem. Ecol.14: 1561–1571.

    Article  CAS  Google Scholar 

  • — 1990. Ecological implication of the destruction of juglone (5 hydroxy-1, 4-naphthoquinone) by soil bacteria. J. Chem. Ecol.16: 3547–3549.

    Article  Google Scholar 

  • Schumacher, W. J., D. C. Thill &G. A. Lee. 1983. Allelopathic potential of wild oat (Avena fatua) on spring wheat (Triticum aestivum) growth. J. Chem. Ecol.9: 1235–1245.

    Article  CAS  Google Scholar 

  • Shafer, S. R. &U. Blum. 1991. Influence of phenolic acids on microbial populations in the rhizosphere of cucumber. J. Chem. Ecol.17: 369–389.

    Article  CAS  Google Scholar 

  • Siqueira, J. O., M. G. Nair, R. Hammerschmidt &G. R. Safir. 1991. Significance of phenolic compounds in plant soil microbial systems. Crit. Rev. Pl. Sci.10: 63–121.

    CAS  Google Scholar 

  • Sparling, G. P., B. G. Ord &D. Vaughan. 1981. Changes in microbial biomass and activity in soil amended with phenolic acid. Soil Biol. Biochem.13: 455–460.

    Article  CAS  Google Scholar 

  • Stowe, L. G. 1979. Allelopathy and its influence on the distribution of plants in Illinois old-field. J. Ecol.67: 1065–1085.

    Article  CAS  Google Scholar 

  • —. 1980. The influence of nitrogen and phosphorus levels on phytotoxicity of phenolic compounds. Canad. J. Bot.58: 1149–1153.

    CAS  Google Scholar 

  • Tamm, C. O. 1951. Removal of plant nutrients from tree crown by rain. Physiol. Pl.4: 184–188.

    Article  Google Scholar 

  • Tang, C. S. &C. C. Young. 1982. Collection and identification of allelopathic compounds from the undisturbed root system of bigatta limpograss (Hemarthria altissima) Pl. Physiol.69: 155–160.

    Article  CAS  Google Scholar 

  • Tanrisever, N., F. R. Fronczek, N. H. Fischer &G. B. Williamson. 1987. Ceratiolin and other flavonoids fromCeratiola ericoides. Phytochemistry26: 175–179.

    Article  Google Scholar 

  • Tinnin, R. &C. H. Muller. 1971. The allelopathic potential ofAvena fatua: Influence on herb distribution. Bull. Torrey Bot. Club98: 243–250.

    Article  Google Scholar 

  • Tukey, H. B. Jr. 1966. Leaching of metabolites from above-ground plant parts and its implications. Bull. Torrey Bot. Club93: 385–401.

    Article  CAS  Google Scholar 

  • —. 1963. Injury to foliage and its effect on leaching of nutrients from above-ground plant parts. Physiol. Pl.16: 557–564.

    Article  Google Scholar 

  • Turner, J. A. &E. L. Rice. 1975. Microbial decomposition of ferulic acid in soil. J. Chem. Ecol.1: 41–58.

    Article  CAS  Google Scholar 

  • Vancura, V. 1964. Root exudates of plant I: Analysis of root exudates of barley and wheat in their initial phases of growth. Pl. & Soil21: 231–248.

    Article  Google Scholar 

  • Vaughan, D., G. P. Sparling &B. G. Ord. 1983. Amerioration of phytotoxicity of phenolic acids by some soil microbes. Soil Biol. Biochem.15: 613–614.

    Article  CAS  Google Scholar 

  • Wang, T. S. C., S. W. Li &Y. L. Ferng. 1978. Catalytic polymerisation of phenolic compounds by clay minerals. Soil Sci.126: 15–21.

    Article  CAS  Google Scholar 

  • Webb, L. J., J. G. Tracey &K. P. Haydock. 1967. A factor toxic to seedling of the same species associated with living roots of the non-gregarious subtropical rain forest treeGrevillea robusta. J. Appl. Ecol.4: 13–25.

    Article  Google Scholar 

  • Weidenhamer, J. D., T. C. Morton &J. T. Romeo. 1987. Solution volume and seed number: Often overlooked factors in allelopathic bioassay. J. Chem. Ecol.13: 1481–1491.

    Article  CAS  Google Scholar 

  • Westlake, D. W. S., G. Talbot, E. R. Blakley &F. J. Simpson. 1959. Microbial decomposition of rutin. Canad. J. Microbiol.5: 621–629.

    Article  CAS  Google Scholar 

  • Whitehead, D. C., H. Dibbs &R. D. Hartley. 1981. Extractant pH and the release of phenolic compounds from the soils, plant roots and leaf litter. Soil Biol. Biochem.13: 343–348.

    Article  CAS  Google Scholar 

  • ———. 1982. Phenolic compounds in the soil as influenced by the growth of different plant species. J. Appl. Ecol.19: 579–588.

    Article  CAS  Google Scholar 

  • ———. 1983. Bound phenolic compounds in water extracts of soils, plant roots and leaf litter. Soil Biol. Biochem.15: 133–136.

    Article  CAS  Google Scholar 

  • Whittaker, R. H. &P. P. Feeny. 1971. Allelochemicals: chemical interactions among plants. Science171: 757–770.

    Article  PubMed  CAS  Google Scholar 

  • Williams, R. D. &R. E. Hoagland. 1982. The effects of naturally occurring phenolic compounds on seed germination. Weed Sci.30: 206–212.

    CAS  Google Scholar 

  • Williamson, G. B. 1990. Allelopathy, Koch’s postulates and the neck riddle. Pages 143–162in J. B. Grace & D. Tilman (eds.) Perspectives on plant competition. Academic Press, New York.

    Google Scholar 

  • —. 1988. Bioassay for allelopathy: Measuring treatment responses with independent control. J. Chem. Ecol.14: 181–187.

    Article  Google Scholar 

  • —. 1990. Bacterial degradation of juglone. Evidence against allelopathy. J. Chem. Ecol.16: 1732–1742.

    Article  Google Scholar 

  • Willis, A. J. &R. H. Groves. 1991. Temperature and light effects on germination of seven native forbs. Austral. J. Bot.39: 219–228.

    Article  Google Scholar 

  • Willis, R. J. 1985. The historical bases of the concept of allelopathy. J. Hist. Biol.18: 71–102.

    Article  Google Scholar 

  • Wilson, R. E. &E. L. Rice. 1968. Allelopathy as expressed byHelianthus annuus and its role in old-field succession. Bull. Torrey Bot. Club95: 432–448.

    Article  CAS  Google Scholar 

  • Woods, F. W. 1960. Biological antagonisms due to phytotoxic root exudates. Bot. Rev.26: 546–569.

    Google Scholar 

  • Zimdahl, R. L. 1993. Fundamentals of weed science. Academic Press, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inderjit, Dakshini, K.M.M. On laboratory bioassays in allelopathy. Bot. Rev 61, 28–44 (1995). https://doi.org/10.1007/BF02897150

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02897150

Keywords

Navigation