Skip to main content
Log in

Thermodynamic considerations in the analysis of phase stability: The role of interfacial equilibrium in the determination of phase diagrams by X-ray microanalytical techniques

  • Published:
Bulletin of Alloy Phase Diagrams

Abstract

Although the time required for full equilibration may be too long to attain experimentally, equilibrium tie lines between coexisting phases can be determined from unequilibrated alloys and multiphase diffusion couples if the compositions of the two phases coexisting at the interface can be resolved, assuming that the interface is in “local equilibrium”. The capability to examine elemental segregation on a fine spatial scale allows for more rigorous testing of the assumption of local equilibrium at phase interfaces and for the determination of phase equilibria at temperatures below those accessible with more conventional techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • 1888Tho: J.J. Thomson,Application of Dynamics to Physics and Chemistry, Macmillan and Co., New York, 190–155 (1888).

    Google Scholar 

  • 42Dar: L.S. Darken, “Diffusion in Metal Accompanied by Phase Change,”Trans. TMS-AIME, 150, 157–171 (1942).

    Google Scholar 

  • 57Gib: J.W. Gibbs, “On the Equilibrium, of Heterogeneous Substances,”The Collected Works of J.W. Gibbs, Vol. 1-Thermodynamics, Yale University Press, New Haven, CT, 55–353 (1957).

    Google Scholar 

  • 57Hil: M. Hillert, “The Role of Interfacial Energy during Solid State Phase Transformations,”Jerkorntorets Ann., 141, 757–7?? (1957).

    Google Scholar 

  • 58Kir: J.S. Kirkaldy, “Diffusion in Multicomponent Metallic Systems III. The Motion of Planar Phase Interfaces,”Can. J. Phys., 36, 917–925 (1958).

    ADS  Google Scholar 

  • 60Jos: W. Jost,Diffusion in Solids, Liquids, Gases, Academic Press, New York, 16–82 (1960).

    Google Scholar 

  • 60Pet: N.L. Peterson and R.E. Ogilvie, “Diffusion in the Uranium-Niobium System,”Trans. TMS-AIME, 218, 439–443 (1960).

    Google Scholar 

  • 64Pur: G.R. Purdy, D.H. Weichert, and J.S. Kirkaldy, “The Growth of Proeutectoid Ferrite in Ternary Iron-Carbon-Manganese Austenites,”Trans. TMS-AIME, 230, 1025–1034 (1964).

    Google Scholar 

  • 65Gol: J.I. Goldstein and R.E. Ogilvie, “A Re-Evaluation of the Iron-Rich Portion of the Fe−Ni System,”Trans. TMS-AIME, 233, 2083–2087 (1965).

    Google Scholar 

  • 66Aar1: H.I. Aaronson, H.A. Domain, and G.M. Pound, “Thermodynamics of the Austenite to Proeutectoid Ferrite Transformation I,”Trans. TMS-AIME, 236, 753–757 (1966).

    Google Scholar 

  • 66Aar2: H.I. Aaronson, H.A. Domain, and G.M. Pound, “Thermodynamics of the Austenite to Proeutectoid Ferrite Transformation II,”Trans. TMS-AIME, 236, 768–781 (1966).

    Google Scholar 

  • 66Aar3: H.I. Aaronson and H.A. Domain, “Partition of Alloying Elements Between Austenite and Proeutectoid Ferrite or Bainite,”Trans. TMS-AIME, 236, 781–796 (1966).

    Google Scholar 

  • 66Gol: J.I. Goldstein and R.E. Ogilvie, “Metallurgical Considerations for the Determination of Phase Diagrams by Electron Probe Microanalysis,”X-Ray Optics and Microanalysis, R. Castaing, P. Deschamps, and P. Philibert, Ed., Hermann Press, Paris, 594–602 (1966).

    Google Scholar 

  • 67Bri: J.C. Brice, “The Kinetics of Growth from Solution,”J. Cryst. Growth, 1, 218–224 (1967).

    Article  Google Scholar 

  • 68Eif: J.R. Eifert, D.A. Chatfield, G.W. Powell, and J.W. Spretnak, “Interface Compositions, Motion, and Lattice Transformations in Multiphase Diffusion Couples,”Trans. TMS-AIME, 242, 66–71 (1968).

    Google Scholar 

  • 69Pow: G.W. Powell and R. Schuhmann, Jr., “Local Equilibrium and Diffusion in Binary Alloys,”Trans. TMS-AIME, 245, 961–965 (1969).

    Google Scholar 

  • 70Doa: A.S. Doan and J.I. Goldstein, “The Ternary Phase Diagram, Fe−Ni−P,”Metall. Trans., 1, 1759–1767 (1970).

    Article  Google Scholar 

  • 71Aar: H.B. Aaron and G.R. Kotler, “Second Phase Dissolution,”Metall. Trans., 2, 393–408 (1971).

    Article  Google Scholar 

  • 72Gil: J.B. Gilmore, G.R. Purdy, and J.S. Kirkaldy, “Partition of Manganese During the Proeutectoid Ferrite Transformation in Steel,”Metall. Trans., 3, 3213–3222 (1972).

    Article  Google Scholar 

  • 73Bra: J.D. Braun and G.W. Powell, “Reaction Diffusion and Associated Nonequilibrium Effects in the Au−Co System,”Metall. Trans., 4, 1207–1212 (1973).

    Article  Google Scholar 

  • 75All: S.M. Allen and J.W. Cahn, “Coherent and Incoherent Equilibria in Iron-Rich Iron-Aluminum Alloys,”Acta Metall., 23, 1017–1026 (1975).

    Article  Google Scholar 

  • 75Lan: J.S. Langer and R.F. Sekerka, “Theory of Departure from Local Equilibrium at the Interface of a Two-Phase Diffusion Couple,”Acta Metall., 23, 1225–1237 (1975).

    Article  Google Scholar 

  • 75Nis: T. Nishizawa and A. Chiba, “Inter-phase Equilibrium in Fe−Cr Diffusion Couples,”Trans. Jpn. Inst. Met., 16(12), 767–768 (1975).

    Google Scholar 

  • 75Ran: E. Randich and J.I. Goldstein, “Non-Isothermal Finite Diffusion-Controlled Growth in Ternary Systems,”Metall. Trans. A., 6, 1553–1560 (1975).

    Article  Google Scholar 

  • 77Rom: A.D. Romig, Jr. and J.I. Goldstein, “Experimental Determination of Phase Diagrams with the Electron Microprobe and Scanning Transmission Electron Microscope,”Applications of Phase Diagrams in Metallurgy and Ceramics, NBS Pub. SP-496, National Bureau of Standards, Washington, DC 462–482 (1977).

    Google Scholar 

  • 77Tho: K.C. Thompson-Russell and J.W. Edington,Electron Microscope Specimen Preparation Techniques in Materials Science, Macmillan Press Ltd., London (1977).

    Google Scholar 

  • 80Rom: A.D. Romig, Jr. and J.I. Goldstein, “Determination of the Fe−Ni and Fe−Ni−P Phase Diagrams at Low Temperatures (700 to 300°C),”Metall. Trans. A, 11, 1151–1159 (1980).

    Article  Google Scholar 

  • 81Gas: D.R. Gaskell,Introduction to Metallurgical Thermodynamics, McGraw Hill, New York (1981).

    Google Scholar 

  • 81Geo: P. Georgapoulos and J.B. Cohen, “The Defect Arrangement in Non-Stoichiometric β-NiAl,”Acta Metall., 29, 1535–1551 (1981).

    Article  Google Scholar 

  • 81Gol: J.I. Goldstein, D.E. Newbury, P. Echlin, D.C. Joy, C. Fiori, and E. Lifshin,Scanning Electron Microscopy and X-ray Microanalysis, Plenum Press, New York (1981).

    Google Scholar 

  • 81Rom: A.D. Romig, Jr. and J.I. Goldstein, “The Diffusivity of Ni in Fe−Ni and Fe−Ni−P Martensites,”Metall. Trans. A, 12, 243–251 (1981).

    Article  Google Scholar 

  • 82Cah: J.W. Cahn and F. Larche “Surface Stress and the Chemical Equilibrium of Small Crystals—II. Solid Particles Embedded in a Solid Matrix,”Acta Metall., 30, 51–56 (1982).

    Article  Google Scholar 

  • 82Rom1: A.D. Romig, Jr. and R. Salzbrenner, “Elemental Partitioning as a Function of Heat Treatment in an Fe−Si−V−C Dual Phase Steel,”Scr. Metall., 16, 33–38 (1982).

    Article  Google Scholar 

  • 82Rom2: A.D. Romig, Jr. and R. Salzbrenner, “The Kinetics of the Ferrite/Austenite Transformation in Fe−Si−V−C Alloys: Quantitative Analysis of Elemental Partitioning,”Solid→ Solid Phase Transformations, H.I. Aaronson, D.E. Laughlin, R.F. Sekerka, and C.M. Wayman, Ed., TMS-AIME, Pittsburgh, 849–853 (1982).

    Google Scholar 

  • 83Rom: A.D. Romig, Jr. and J.I. Goldstein, “Interfacial Equilibrium in α/β Cu−Al Diffusion Couples,”Metall. Trans. A, 14, 1224–1227 (1983).

    Google Scholar 

  • 85Fol: D.M. Follstaedt and A.D. Romig, Jr., “Metastable Phase Formation in Ni-Implanted Al: An Analytical Electron Microscope Investigation,”Microbeam Analysis—1985, J.T. Armstrong, Ed., San Francisco Press, San Francisco, 173–178 (1985).

    Google Scholar 

  • 85Gol: J.I. Goldstein, M.R. Notis, and A.D. Romig, Jr., “Atomic Transport as Measured by Electron Optical Techniques,”Diffusion in Solids: Recent Developments, M.A. Dayananda and G.E. Murch, Ed., TMS-AIME, Pittsburgh, 167–193 (1985).

    Google Scholar 

  • 85Rom: A.D. Romig, Jr. and M.J. Cieslak, “Interdiffusion in the Ta−W System,”J. Appl. Phys., 58 (9), 3425–3429 (1985).

    Article  ADS  Google Scholar 

  • 86Dea: D.C. Dean and J.I. Goldstein, “Determination of the Interdiffusion Coefficients in the Fe−Ni and Fe−Ni−P Systems Below 900°C,”Metall. Trans., submitted (1986).

  • 86Joh: W.C. Johnson and J.I.D. Alexander, “Interfacial Conditions for Thermomechanical Equilibrium in Two-Phase Crystals,”J. Appl. Phys., 59(8), 2735–2746 (1986).

    Article  ADS  Google Scholar 

  • 86Joy: D.C. Joy, A.D. Romig, Jr., and J.I. Goldstein,Principles of Analytical Electron Microscopy, Plenum Press, New York (1986).

    Google Scholar 

  • 86Rom: A.D. Romig, Jr., “Diffusion Measurements by Analytical Electron Microscopy,”Materials Problem Solving with the Transmission Electron Microscope, L.W. Hobbs, K.H. Westmacott, and D.B. Williams, Ed., Mater als Research Society, Pittsburgh, 169–182 (1986).

    Google Scholar 

  • 86Sig: C. Sigli and J. Sanchez, private communication, Henry Crumb School of Mines, Columbia University, New York (1986).

  • 86Voo: P.W. Voorhees and W.C. Johnson, “Interfacial Equilibrium During First-Order Phase Transformations in Solids,”J. Chem. Phys., 84(9), 5108–5121 (1986).

    Article  ADS  Google Scholar 

  • 87Not: M.R. Notis, J.I. Goldstein, L. Yicheng, and A.D. Romig, Jr., “Interfacial Equilibrium in Cu/Cu−Al Diffusion Couples,”Metall. Trans. (1987) to be submitted.

  • 87Rom: A.D. Romig, Jr., “Phase Stability and Interdiffusion in the U−Nb System,”Metall. Trans. (1987) to be submitted.

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was performed at Sandia National Laboratories, supported by the U.S. Department of Energy under contract No. DE-AC04-76DP00789.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romig, A.D. Thermodynamic considerations in the analysis of phase stability: The role of interfacial equilibrium in the determination of phase diagrams by X-ray microanalytical techniques. Bulletin of Alloy Phase Diagrams 8, 308–322 (1987). https://doi.org/10.1007/BF02869262

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02869262

Keywords

Navigation