Skip to main content
Log in

The effect of hold time on the fatigue properties of a β-processed titanium alloy

  • Mechanical Behavior
  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Several recent papers have demonstrated that dwell periods at peak stress can significantly reduce the number of cycles to failure in LCF tests on titanium alloys and can cause enhanced growth rates in fatigue crack propagation tests. In all cases cleavage or quasi-cleavage facet formation has been intimately linked with the dwell sensitive fatigue response. The present paper demonstrates that facets can also form during creep deformation at ambient temperatures and it proposes that the LCF dwell effect and facet formation under cyclic conditions is dependent on time dependent plastic strain accumulation. If hydrogen contributes to the failure process it is suggested this must be through an interaction with dislocations. The significance of the model for dwell sensitive fatigue crack propagation is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. W. Hoeppner:A Fractographic Analysis of Flaw Growth in a High Strength Titanium Alloy, Report, University of Missouri Columbia, 1975.

    Google Scholar 

  2. C. A. Stubbington and S. Pearson: RAE Technical Report 76040, RAE, Farnborough, Hants, UK, 1976.

    Google Scholar 

  3. C. A. Stubbington, S. Pearson, and T. S. Baker: RAE Technical Report 76147, RAE, Farnborough, Hants, UK, 1976.

    Google Scholar 

  4. P. J. Postans and R. H. Jeal:Dependence of Crack Growth Performance Upon Structure in β-Processed Titanium Alloys, Paper 9, Conference on Forging and Properties of Aerospace Materials, The Metals Society, Leeds, UK, January 1977.

  5. D. Eylon and J. A. Hall:Met. Trans. A, 1977, vol. 8A, p. 981.

    Article  CAS  Google Scholar 

  6. S. Pearson: RAE Technical Report 66204, RAE, Farnborough, Hants, UK, 1966.

    Google Scholar 

  7. B. Gross and J. E. Srawley:Stress Intensity Factors for Single Edge Notch Specimens in Bending or Combined Bending and Tension by Boundary Collocation of a Stress Function, NASA TN D-2603, 1965.

  8. D. N. Williams:Met. Trans., 1974, vol. 5, p. 2351.

    Article  CAS  Google Scholar 

  9. H. Margolin:Met. Trans. A, 1976, vol. 7A, p. 1233.

    Article  CAS  Google Scholar 

  10. W. J. Evans:The Effect of Microstructure on Fatigue Crack Propagation in α+β Titanium Alloys, no. 20, p. 153, Practical Implications of Fracture Mechanisms, Series, 2, Institution of Metals, 1973.

  11. W. J. Evans and A. W. Beale:Fatigue Crack Propagation in Wrought Titanium Alloys, Paper 8, Conference on Forging and Properties of Aerospace Materials, The Metals Society, Leeds, UK, January 1977.

  12. W. J. Evans: Unpublished research, NGTE, Pyestock, Hanfs UK, 1974.

  13. P. J. Bania and D. Eylon:Met. Trans. A., 1978, vol. 9A, p. 847.

    Article  CAS  Google Scholar 

  14. N. E. Paton and R. A. Spurling:Met. Trans. A., 1976, vol. 7A, p. 1769.

    Article  CAS  Google Scholar 

  15. I. W. Hall:Met. Trans. A, 1978, vol. 9A, p. 815.

    Article  CAS  Google Scholar 

  16. I. W. Hall and C. HammondMater. Sci. Eng., 1978, vol. 32, p. 241.

    Article  CAS  Google Scholar 

  17. D. McLean:Mechanical Properties of Metals, John Wiley and Sons Inc., 1962.

  18. J. F. Knott:Fundamentals of Fracture Mechanics, Butterworth, London, 1973.

    Google Scholar 

  19. D. N. Williams:Mater. Sci. Eng., 1975, vol. 18, p. 149.

    Article  CAS  Google Scholar 

  20. D. A. Meyn:Met. Trans., 1974, vol. 5, p. 2405.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evans, W.J., Gostelow, C.R. The effect of hold time on the fatigue properties of a β-processed titanium alloy. Metall Trans A 10, 1837–1846 (1979). https://doi.org/10.1007/BF02811727

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02811727

Keywords

Navigation