Skip to main content
Log in

Some ecophysiological and historical approaches to species richness and calcicole/calcifuge behaviour — contribution to a debate

  • Published:
Folia Geobotanica Aims and scope Submit manuscript

Abstract

Species richness in vascular plants was related to the plants’ calcifuge or calcicole behaviour using documentation from forests and open-land vegetation at about one thousand sites in the southern parts of Sweden. It is concluded that vegetation of strongly acid soils (pH-KCl < 4.5) have fewer vascular plant species than comparable vegetation of other soils, whereas there are no consistent differences in species richness between slightly-moderately acid and calcareous sites. Low species richness is particularly related to high concentrations of Al3+ and H+ ions (either soil solution concentrations or concentrations of exchangeable ions), not to a lack of calcium carbonate. The majority of plant species are able to render the sparingly soluble phosphate, iron and manganese compounds of high-pH soils available, but they are unable to tolerate much Al3+ or H+. Acidicole (calcifuge) species have developed the power of tolerating Al3+ and H+, which may be considered a secondary property of plants, but they have lost the power of solubilizing critical mineral nutrients in high-pH soils. The reasons why these ecophysiological properties are inversely related in the current flora are obscure, difficult to account for experimentally and a main ecological problem. In areas with cool-temperate climates the flora was partly or mainly extinguished by the Pleistocene glaciations. Comparatively fewer calcifuge than calcicole species have, since then, had enough time to develop, and the number of calcifuges is lower, in spite of the fact that most natural and seminatural soils of these areas are nowadays acidic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adams F. &Hathcock P.J. (1984): Aluminium toxicity and calcium deficiency in acid subsoil horizons of two coastal plains soil series.J. Soil Sci. Soc. Amer. 48: 1305–1309.

    Article  CAS  Google Scholar 

  • Andersson M. (1992): Effects of pH and aluminium on growth ofGalium odoratum (L.)Scop. in flowing solution culture.Environm. Exp. Bot. 32: 497–504.

    Article  CAS  Google Scholar 

  • Andersson M.E. (1993): Aluminium toxicity as a factor limiting the distribution ofAllium ursinum L.Ann. Bot. (Oxford) 72: 607–611.

    Article  CAS  Google Scholar 

  • Andersson M.E. &Brunet J. (1993): Sensitivity to H and Al ions limiting growth and distribution of the woodland grassBromus benekenii.Pl. & Soil 153: 243–254.

    Article  CAS  Google Scholar 

  • Ellenberg H. (1992): Zeigerwerte der Gefässpflanzen (ohneRubus).Scripta Geobot. 18: 9–166.

    Google Scholar 

  • Ewald J. (2003): The calcareous riddle: Why are there so many calciphilous species in the Central European flora?Folia Geobot. 38: 357–366 (this issue).

    Article  Google Scholar 

  • Falkengren-Grerup U. &Tyler G. (1993a): Soil chemical properties excluding field-layer species from beech forest mor.Pl. & Soil 148: 185–191 (Errata in 150: 323).

    Article  CAS  Google Scholar 

  • Falkengren-Grerup U. &Tyler G. (1993b): The importance of soil acidity, moisture, exchangeable cation pools and organic matter solubility to the cationic composition of beech forest (Fagus sylvatica L.) soil solution.Z. Pflanzenernähr. Bodenk. 156: 365–370.

    Article  CAS  Google Scholar 

  • Gries D. &Runge M. (1992): The ecological significance of iron mobilization in wild grasses.J. Pl. Nutr. 15: 1727–1737.

    CAS  Google Scholar 

  • Gries D. &Runge M. (1995): Responses of calcicole and calcifugePoaceae species to iron-limiting conditions.Bot. Acta 108: 482–489.

    CAS  Google Scholar 

  • Jones D.L. (1998): Organic acids in the rhizophere — a critical review.Pl. & Soil 205: 25–44.

    Article  CAS  Google Scholar 

  • Kinraide T. B. (1991): Identity of the rhizotoxic aluminium species.Pl. & Soil 134: 167–178.

    CAS  Google Scholar 

  • Lee J.A. (1999): The calcicole-calcifuge problem revisited.Advances Bot. Res. 29:1–30.

    CAS  Google Scholar 

  • Marschner H. (1991): Mechanisms of adaptation of plants to acid soils.Pl. & Soil 134: 1–20.

    CAS  Google Scholar 

  • Marschner H. &Kissel M. (1986): Different strategies in higher plants in mobilization and uptake of iron.J. Pl. Nutr. 9: 695–713.

    CAS  Google Scholar 

  • Rengel Z. (1992): Role of calcium in aluminium toxicity.New Phytol. 121: 499–513.

    Article  CAS  Google Scholar 

  • Schöttelndreier M., Norddahl M.M., Ström L. &Falkengren-Grerup U. (2001): Organic acid exudation by wild herbs in response to elevated Al concentrations.Ann. Bot. (Oxford) 87: 769–775.

    Article  CAS  Google Scholar 

  • Ström L. (1997): Root exudation of organic acids — importance to nutrient availability and the calcifuge and acidifuge behaviour of plants.Oikos 80: 459–466.

    Article  Google Scholar 

  • Tyler G. (1989a): The interacting effects of soil acidity and canopy cover on the species composition of field-layer vegetation in oak-hornbeam forest.Forest Ecol. Managem. 28: 101–114.

    Article  Google Scholar 

  • Tyler G. (1989b): Edaphical distribution patterns of macrofungal species in deciduous forest of south Sweden.Acta Oecol., Oecol. Gen. 10: 309–326.

    Google Scholar 

  • Tyler G. (1992): Inability to solubilize phosphate in limestone soils — key factor controlling calcifuge behaviour of plants.Pl. & Soil 45: 65–70.

    Article  Google Scholar 

  • Tyler G. (1993): Soil solution chemistry controlling the field distribution ofMelica ciliata L.Ann. Bot. (Oxford) 71: 295–301.

    Article  CAS  Google Scholar 

  • Tyler G. (1994): A new approach to understanding the calcifuge habit of plants.Ann. Bot. (Oxford) 73: 327–330.

    Article  Google Scholar 

  • Tyler G. (1996): Soil chemistry and plant distributions in rock habitats of southern Sweden.Nord. J. Bot. 16: 609–635.

    Google Scholar 

  • Tyler G. (2000): Integrated analysis of conditions accounting for intersite distribution of grassland plants.Nord. J. Bot. 20: 485–500.

    Google Scholar 

  • Tyler G. &Ström L. (1995): Differing organic acid exudation pattern explains calcifuge behaviour of plants.Ann. Bot. (Oxford) 75: 75–78.

    Article  CAS  Google Scholar 

  • Tyler G. &Falkengren-Grerup U. (1998): Soil chemistry and plant performance — Ecological considerations.Progr. Bot. 59: 634–658.

    CAS  Google Scholar 

  • van Aarle I.M. (2002):The ecophysiology of arbuscular mycorrhizal fungi: Phosphatase activity associated with extraradical and intraradical mycelium. Doctoral thesis, Department of Ecology, Microbial Ecology, Lund University, Lund.

    Google Scholar 

  • van der Heijden M.G.A., Klironomos J.N., Ursic M., Moutoglis P., Streitwolf-Engel R., Boller T., Wiemken A. &Sanders I.R. (1998): Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity.Nature 396: 69–72.

    Article  CAS  Google Scholar 

  • Zohlen A. (2002): Chlorosis in wild plants: is it a sign of Fe deficiency?J. Pl. Nutr. 25: 2205–2228.

    Article  CAS  Google Scholar 

  • Zohlen A. &Tyler G. (2000): Immobilization of tissue iron on calcareous soil — differences between calcicole and calcifuge plants.Oikos 89: 95–106.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Germund Tyler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tyler, G. Some ecophysiological and historical approaches to species richness and calcicole/calcifuge behaviour — contribution to a debate. Folia Geobot 38, 419–428 (2003). https://doi.org/10.1007/BF02803249

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02803249

Keywords

Navigation