Skip to main content
Log in

Effect of growth conditions on the rheological properties and chemical composition ofVolcaniella eurihalina exopolysaccharide

  • Original Articles
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The exopolysaccharide produced byVolcaniella eurihalina, an halophilic eubacterium, under different environmental and nutritional conditions, is studied.V. eurihalina synthesizes an acidic heteropolysaccharide, composed by rhamnose, glucose, and mannose, as well as amino sugars, uronic acids, and acetyl and sulphate residues. This composition varies depending on the nutrients of culture medium. Viscosity and pseudoplasticity of the polymer solutions are also influenced by the nutritional conditions in which the microorganism was grown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sutherland, I. W. (1990),Biotechnology of Microbial Exopolysaccharides, vol. 9, Cambridge University Press, Cambridge.

    Google Scholar 

  2. Bryan, B. B., Linhardt, R. L., and Daniels, L. (1986),Appl. Environ. Microbiol. 51(6), 1304–1308.

    CAS  Google Scholar 

  3. Cerning, J., Renard, C. M. G. C., Thibault, J. F., Bouillanne, C., Landon, M., Desmazeaud, M., and Topisirovic, L. (1994),Appl. Environ. Microbiol. 60(11), 3914–3919.

    CAS  Google Scholar 

  4. Kojic, M., Vujcic, M., Banina, A., Cocconcelli, P., Cerning, J., and Topisirovic, L. (1992),Appl. Environ. Microbiol. 58(12), 4086–4088.

    CAS  Google Scholar 

  5. Lohman, D. (1990), inNovel Biodegradable Microbial Polymers, Dawes, E. A., ed., Kluver Academic, Netherland, pp. 333–348.

    Google Scholar 

  6. Quesada, E., Valderrama, M. J., Bejar, V., Ventosa, A., Gutierrez, M. C., Ruiz-Berraquero, F., and Ramos-Cormenzana, A. (1990),Int. J. Syst. Bacteriol. 40(3), 261–267.

    Article  CAS  Google Scholar 

  7. Quesada, E., Bejar, V., and Calvo, C. (1993),Experientia 49(12), 1037–1041.

    Article  CAS  Google Scholar 

  8. Calvo, C., Ferrer, M. R., Martinez-Checa, F., Bejar, V., and Quesada, E. (1995),Appl. Biochem. Biotechnol. 55(1), 45–54.

    CAS  Google Scholar 

  9. Moraine, R. A. and Rogovin, P. (1966),Biotechn. Bioeng. 8, 511–524.

    Article  CAS  Google Scholar 

  10. Rodriguez-Valera, F., Ruiz-Berraquero, F., and Ramos-Cormenzana, A. (1981),Microb. Ecol. 7, 235–243.

    Article  Google Scholar 

  11. Ng, T. K. and Hu, W. S. (1989),Appl. Microbiol. Biotechnol. 31, 480–485.

    Article  CAS  Google Scholar 

  12. Quesada, E., Del Moral, A., and Bejar, V. (1994),Biotechnology Techniques 8(10), 701–706.

    Article  CAS  Google Scholar 

  13. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., and Smith, F. (1956),Anal. Chem. 28, 350–356.

    Article  CAS  Google Scholar 

  14. Lowry, O. H., Rosebrough, N.J., Farr, A. L., and Randall, R. J. (1951),J. Biol. Chem. 193, 265–275.

    CAS  Google Scholar 

  15. Johnson, A. R. (1971),Anal. Biochem. 44, 628–635.

    Article  CAS  Google Scholar 

  16. Bergmeyer, H. V. and Bernt, E. (1974),Methods of enzymatic analysis, vol 3, Academic, New York, pp. 1205–1215.

    Google Scholar 

  17. Blumenkrantz, N. and Asboe-Hansen, G. (1973),Anal. Biochem. 54, 484–489.

    Article  CAS  Google Scholar 

  18. Dodgson, K. S. and Price, R. G. (1962),Biochem. J. 84, 106–110.

    CAS  Google Scholar 

  19. McComb, E. A. and Mc Cready, R. M. (1957),Anal. Chem. 29, 819–821.

    Article  CAS  Google Scholar 

  20. Sweeley, C. C., Bentley, R., Makita, M., and Wells, W. W. (1963),Gas Chrom. Sug. 85, 2497–2507.

    CAS  Google Scholar 

  21. Dasinger, B. L., McArthur, H. A. I., Lengen, J. P., Smogowicz, A. A., Miller, J. W., O’Neill, J. J., Horton, D., and Costa, J. B. (1994),Appl. Environ. Microbiol. 60(4), 1364–1366.

    CAS  Google Scholar 

  22. De la Vega, M. G., Cejudo F. J., and Panque, A. (1991),Appl. Biochem. and Biotechnol. 30(3), 273–284.

    Article  Google Scholar 

  23. Novak, J. S., Tanenbaum, S. W., and Nakas, J. P. (1992),Appl. Environ. Microbiol. 58(11), 3501–3507.

    CAS  Google Scholar 

  24. Anton, J., Meseguer, I., and Rodriguez-Valera, F. (1988),Appl. Environ. Microbiol. 54(10), 2381–2386.

    CAS  Google Scholar 

  25. Kang, K. K., Veeder, G. T., Mirrasoul, P. J., Kaneko, T., and Cottrell, I. W. (1982),Appl. Environ. Microbiol. 43(5), 1086–1091.

    CAS  Google Scholar 

  26. Pfiffner, S. M., McInerney, M. J., Jenneman, G. E., and Knapp, R. M. (1986),Appl. Environ. Microbiol. 51(6), 1224–1229.

    CAS  Google Scholar 

  27. Inoue, K., Korenaga, H., Tanaka, N. G., Sakamoto, N., and Kadoya, S. (1988),Carbohydr. Res. 81, 135–142.

    Article  Google Scholar 

  28. Matsuda, M. and Worawattanamateekul, W. (1992),Nippon Susian Gakkaishi 58, 1735–1741.

    CAS  Google Scholar 

  29. Okutani, K. and Shigeta, S. (1993),Nippon Suisan Gakkaishi 59(8), 1433–1438.

    CAS  Google Scholar 

  30. Tait, M. I., Sutherland, I. W., and Clarke-Sturman, A. J. (1986),J. Gen. Microbiol. 132, 1483–1492.

    CAS  Google Scholar 

  31. Uhlinger, D. J. and White, D. C. (1983),Appl. Environ. Microbiol. 45(1), 64–70.

    CAS  Google Scholar 

  32. Sutherland, I. W. (1992),Food Biotechnol. 6(1), 75–86.

    Article  CAS  Google Scholar 

  33. Cesáro, A., Gamini, A., and Navarini, L. (1992),Polymer 33(19), 4001–4008.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bejar, V., Calvo, C., Moliz, J. et al. Effect of growth conditions on the rheological properties and chemical composition ofVolcaniella eurihalina exopolysaccharide. Appl Biochem Biotechnol 59, 77–86 (1996). https://doi.org/10.1007/BF02787859

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02787859

Index Entries

Navigation