Skip to main content
Log in

A direct resolution of singularities for functions of two variables with applications to analysis

  • Published:
Journal d’Analyse Mathématique Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. [BK] E. Brieskorn and H. Knorrer,Plane Algebraic Curves, Birkhäuser, Basel, 1986.

    MATH  Google Scholar 

  2. [PS] D. H. Phong and E. M. Stein,The Newton polyhedron and oscillatory integral operators, Acta Math.179 (1997), 107–152.

    Article  MathSciNet  Google Scholar 

  3. [PS2] D. H. Phong and E. M. Stein,Models of degenerate Fourier integral operators and Radon transforms, Ann. of Math.140 (1994), 703–722.

    Article  MATH  MathSciNet  Google Scholar 

  4. [PSSt] D. H. Phong, E. M. Stein and J. Sturm,Multilinear level set operators, oscillatory integral operators, and Newton diagrams, Math. Ann.319 (2001), 573–596.

    Article  MATH  MathSciNet  Google Scholar 

  5. [Ry] V. Rytchkov,Sharp L 2 bounds for oscillatory integral operators with C phases, Math. Z.236 (2001), 461–489.

    Article  MathSciNet  Google Scholar 

  6. [V] A. N. Varchenko,Newton polyhedra and estimates of oscillatory integrals, Funct. Anal. Appl.18 (1976), 175–196.

    Google Scholar 

  7. R. J. Walker,Algebraic Curves, Princeton Univ. Press, 1950.

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported in part by NSF grant DMS-9988798.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greenblatt, M. A direct resolution of singularities for functions of two variables with applications to analysis. J. Anal. Math. 92, 233–257 (2004). https://doi.org/10.1007/BF02787763

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02787763

Keywords