Skip to main content
Log in

CD28/CTLA-4 and CD80/CD86 families

Signaling and function

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

T cell stimulation in the absence of a second, costimulatory signal can lead to anergy or the induction of cell death. CD28 is a major T cell costimulatory receptor, the coengagement of which can prevent anergy and cell death. The CD28 receptor is a member of a complex family of polypeptides that includes at least two receptors and two ligands. Cytotoxic lymphocyte-associated molecule-4 (CTLA-4, CD152) is the second member of the CD28 receptor family. The ligands or counterreceptors for these two proteins are the B7 family members, CD80 (B7-1) and CD86 (B7-2). This article reviews the CD28/CTLA4 and CD80/CD86 families, and outlines the functional outcomes and biochemical signaling pathways recruited after CD28 ligation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bretscher P:Thetwo-signalmodel of lymphocyte activation twenty-one years later. Immunol Today 1992;13:74–76.

    PubMed  CAS  Google Scholar 

  2. Schwartz RH: Costimulation of T lymphocytes: the role of CD28, CTLA-4, and B7/BB l in interleukin-2 production and immunotherapy. Cell 1992;71: 1065–1068.

    PubMed  CAS  Google Scholar 

  3. Schwartz RH: A cell culture model for T lymphocyte clonal anergy. Science 1990;248:1349–1356.

    PubMed  CAS  Google Scholar 

  4. June CH, Bluestone JA, Nadler LM, Thompson CB: The B7 and CD28 receptor families. Immunol Today 1994;15(7):321–332.

    PubMed  CAS  Google Scholar 

  5. Linsley PS, Ledbetter JA. Therole of the CD28 receptor during T cell responses to antigen. Ann Rev Immunol 1993;11:191–212.

    CAS  Google Scholar 

  6. Songyang Z, Shoelson SE, Chaudhuri M, Gish G, Pawson T, Haser GW, et al.: SH2 domains recognize specific phosphopeptide sequences. Cell 1993;72:767–778.

    PubMed  CAS  Google Scholar 

  7. Nishizuka Y: Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science 1992;258:607–614.

    PubMed  CAS  Google Scholar 

  8. Cobb MH, Hepler HE, Cheng M, Robbins D: The mitogen-activated protein kinases Erk 1 and Erk2. Sem Cancer Biol 1994;5:261–268.

    CAS  Google Scholar 

  9. Parry RV, Olive D, Westwick J, Sansom DM, Ward SG: Evidence that a kinase distinct from protein kinase C and phosphatidylinositol 3-kinase mediates ligation-dependent serine/threonine phosphorylation of the T-lymphocyte co-stimulatory receptor CD28. Biochem J 1997;326:249–257.

    PubMed  CAS  Google Scholar 

  10. Linsley PS, Greene JL, Brady W, Bajorath J, Ledbetter JA, Peach R: Human B7-1 (CD80) and B7-2 (CD86) bind with similar avidities but distinct kinetics to CD28 and CTLA-4 receptors. Immunity 1994;793–801.

  11. Freeman GJ, Lombard DB, Gimmi CD, Brod SA, Lee K, Laning JC, et al.: CTLA-4 and CD28 mRNA are coexpressed in most T cells after activation. Expression of CTLA-4 and CD28 mRNA does not correlate with the pattern of lymphokine production. J Immunol 1992;149(12):3795–3801.

    PubMed  CAS  Google Scholar 

  12. Linsley PS, Greene JL, Tan P, Bradshaw J, Ledbetter JA, Anasetti C, et al.: Coexpression and functional cooperativity of CTLA-4 and CD28 mRNA on activated T lymphocytes. J Exp Med 1992; 176:1595–1604.

    PubMed  CAS  Google Scholar 

  13. Brunet J-F, Denizot F, Luciani M-F, Roux-Dosseto M, Suzan M, Mattei M-G, Golstein P: A new member of the immunoglobulin superfamily-CTLA-4. Nature 1987; 328:267–270.

    PubMed  CAS  Google Scholar 

  14. Walunas TL, Lenschow DJ, Bakker CY, Linsley PS, Freeman GJ, Green JM, et al.: CTLA-4 can function as a negative regulator of T cell activation. Immunity 1994; 1:405–413.

    PubMed  CAS  Google Scholar 

  15. Schneider H, Prasad KVS, Shoelson SE, Rudd CE: CTLA-4 binding to the lipid kinase phosphatidylinositol 3-Kinase in T cells. J Exp Med 1995;181:351–355.

    PubMed  CAS  Google Scholar 

  16. Leung HT, Bradshaw J, Cleaveland JS, Linsley PS: Cytotoxic T lymphocyte-associated molecule-4, a high avidity receptor for CD80 and CD86, contains an intracellular localization motif in its cytoplasmic tail. J Biol Chem 1995; 270:25,107–25,114.

    CAS  Google Scholar 

  17. Alegre M, Noel PJ, Eisfelder BJ, Chuang E, Clark M, Reiner SL, et al.: Regulation of surface and intracellular expression of CTLA4 on mouse T cells. J Immunol 1996; 157:4762–4770.

    PubMed  CAS  Google Scholar 

  18. Shiratori T, Miyatake S, Ohno H, Nakadeko C, Isono K, Bonifacino JS, et al.: Tyrosine phosphorylation controls internaliztion of CTLA-4 by regulating its interaction with clathrin-associated adapter complex AP-2. Immunity 1997;6:583–589.

    PubMed  CAS  Google Scholar 

  19. Zhang Y, Allison JP: Interaction of CTLA-4 with AP50, a clathrin-coated pit adapter protein. Proc Natl Acad Sci USA 1997;94:9273–9278.

    PubMed  CAS  Google Scholar 

  20. Linsley PS, Bradshaw J, Greene J, Peach R, Bennett KL, Mittler RS: Intracellular trafficking of CTLA-4 and localization towards sites of TcR engagement. Immunity 1996; 4:535–543.

    PubMed  CAS  Google Scholar 

  21. Yokochi T, Holly RD, Clark EA: B lymphoblast antigen (BB-1) expressed on Epstein-Barr virusactivated B cell blasts, B lymphoblstoid cell lines, and Burkitt’s lymphomas. J Immunol 1982; 128(2):823–828.

    PubMed  CAS  Google Scholar 

  22. Linsley PS, Clark EA, Ledbetter JA. T-cell antigen CD28 mediates adhesion with B cells by interacting with activation antigen B7/ BB-1. Proc Natl Acad Sci USA 1990;87:5031–5035.

    PubMed  CAS  Google Scholar 

  23. Freeman GJ, Freedman AS, Segil JM, Lee G, Whitman JF, Nadler L: B7, a new member of the Ig superfamily with unique expression on activated and neoplastic B cells. J Immunol 1989;143: 2714–2722.

    PubMed  CAS  Google Scholar 

  24. Freeman GJ, Gray GS, Gimmi CD, Lombard DB, Zhou L-J, Whiite M, et al.: Structure, expression, and T cell costimulatory activity of the murine homologue of the human B lymphocyte activation antigen B7. J Exp Med 1991;174(3):625–631.

    PubMed  CAS  Google Scholar 

  25. Doty RT, Clark EA: Two regions in the CD80 cytoplasmic tail regulate CD80 redistribution and T cell costimulation. J Immunol 1998; 161:2700–2707.

    PubMed  CAS  Google Scholar 

  26. Greene JL, Leytze GM, Emswiler J, Peach R, Bajorath J, Cosand W, et al: Covalent dimerization of CD28/CTLA-4 and oligomerization of CD80/CD86 regulate T cell costimulatory interactions. J Biol Chem 1996;271 (43):26,762–26,771.

    CAS  Google Scholar 

  27. Doty RT, Clark EA: Subcellular localization of CD80 receptors is dependent on an intact cytoplasmic tail and is required for CD28-dependent T cell costimulation. J Immunol 1996;157:3270–3279.

    PubMed  CAS  Google Scholar 

  28. Chen C, Gault A, Shen L, Nabavi N: Molecular cloning and expression of early T cell costimulatory molecule-l and its characterization as B7-2 molecule. J Immunol 1994;152:4929–4936.

    PubMed  CAS  Google Scholar 

  29. Freeman GJ, Boriello F, Hodes RJ, Resier H, Gribben JG, Ng JW, et al.: Murine B7-2, an alternative CTLA4 counter-receptor that costimulates T cell proliferation and interleukin 2 production. J ExpMed 1993;178:2185–2192.

    CAS  Google Scholar 

  30. Freeman GJ, Gribben JG, Boussiotis VA, Ng JW, Jur VAR, Lombard LA, et al.: Cloning of B7-2: a CTLA-4 counter-receptor that costimulates human T cell proliferation. Science 1993;262: 909–911.

    PubMed  CAS  Google Scholar 

  31. Lenschow DJ, Walunas TL, Bluestone JA: CD28/B7 sytem of T cell costimulation. Ann Rev Immunol 1996;14:233–258.

    CAS  Google Scholar 

  32. Azuma M, Ito D, Yagita H, Okumura K, Phillips JH, Lanier LL, et al.: B70 antigen is a second ligand for CTLA-4 and CD28. Nature 1993;366:76–79.

    PubMed  CAS  Google Scholar 

  33. Lenschow DJ, Su GH-T, Zuckerman LA, Nabavi N, Jellis CL, Gray G, et al.: Expression and functional significance of an additional ligand for CTLA-4. Proc Natl Acad Sci USA 1993;90: 11,054–11,058.

    CAS  Google Scholar 

  34. Hathcock KS, Laszlo G, Pucillo C, Linsley P, Hodes RJ: Comparative analysis of B7-1 and B7-2 costimulatory ligands:expression and function. J Exp Med 1994; 180: 631–641.

    PubMed  CAS  Google Scholar 

  35. Boussiotis VA, Freeman GJ, Gribben JG, Daley J, Gray, GS, Nadler LM: Activated human B lymphocytes express three CTLA4 binding counter-receptors which costimulate Tcell activation. Proc Natl Acad Sci USA 1993;90:11,059–11,063.

    CAS  Google Scholar 

  36. Ho WY, Cooke MP, Goodnow CC, Davis MM: Resting and anergic B cells are defective in CD28-dependent costimulation of naive CD4+ T cells. J Exp Med 1995; 179:1539–1549.

    Google Scholar 

  37. Ranheim EA, Kipps TJ: Activated T cells induce expression of B7/ BB1 on normal or leukemic B cells through a CD40-dependent signal. J Exp Med 1993;177:925.

    Google Scholar 

  38. Roy M, Aruffo A, Ledbetter J, Linsley P, Kehry M, Noelle R: Studies on the interdependence of gp39 and B7 expression and function during antigen-specific immune responses. Eur J Immunol 1995;25:596–603.

    PubMed  CAS  Google Scholar 

  39. Freeman GJ, Cardoso AA, Boussiotis VA, Anumanthan A, Groves RW, Kupper TS, et al: The BB1 monoclonal antibody recognizes both cell surface CD74 (MHC class II-associated invariant chain) as well as B7-1 (CD80), resolving the question regarding a third CD28/CTLA-4 counterreceptor. J Immunol 1998; 161:2708–2715.

    PubMed  CAS  Google Scholar 

  40. Valle A, Aubry JP, Durnad I, Bancheraue J: IL-4 and IL-2 upregulate the expression of antigen B7, the B cell counterstructure to T cell CD28: an amplification mechanism for T-B interactions. Int Immunol 1991;2:229–235.

    Google Scholar 

  41. Stack RM, Lenschlow DJ, Gray GS, Bluestone JA, Fitch FW: IL-4 treatment of small splenic B cells induces costimulatory molecules B7-1 and B7-2. J Immunol 1994; 152:5723–5733.

    PubMed  CAS  Google Scholar 

  42. Bulens C, Willems F, Delvaux A, Pierard G, Delville J-P, Velu T, et al.: Interleukin 10 differentially regulates B7-1 (CD80) and B7-2 (CD86) expression on human peripheral blood dendritic cells. Eur J Immunol 1995;25:2421–2426.

    Google Scholar 

  43. Willems F, Marchant A, Delville JP, Gerard C, Delvaux A, Velu T, et al.: Interleukin 10 inhibits B7 and ICAM-1 expression on human monocytes. Eur J Immunol 1994; 24:1007–1009.

    PubMed  CAS  Google Scholar 

  44. Truneh A, Reddy M, Ryan P, Lyn SD, Eichman C, Couez D, et al.: Differential recognition by CD28 of its cognate counter receptors CD80(B7.1)andB70(B7.2):analysis by site directed mutagenesis. Mollmmunol 1996;33(3):321–334.

    CAS  Google Scholar 

  45. Peach RJ, Bajorath J, Naemura J, Leytze G, Greene J, Aruffo A, et al.: Both extracellular immunoglobulin-like domains of CD80 contain residues critical for binding T cell surface receptors CTLA-4 and CD28. J Biol Chem 1996; 270:21181–21187.

    Google Scholar 

  46. Kariv I, Truneh A, Sweet R: Analysis of the site of interaction of CD28 with its counter-receptors CD80 and CD86 and correlation with function. J Immunol 1996: 29-38.

  47. Ellis JH, Burden MN, Vinogradov DV, Linge C, Crowe JS: Interactions of CD80 and CD86 with CD28 and CTLA-4. J Immunol 1996:2700–2709.

  48. Fargeas CA, Truneh A, Reddy M, Hurle M, Sweet R, Sekaly R-P: Identification of residues in the V domain of CD80 (B7-1) implicated in functional interactions with CD28 and CTLA-4. J Exp Med 1995; 182:667–675.

    PubMed  CAS  Google Scholar 

  49. Peach RJ, Bajorath J, Brady W, Leytze G, Greene J, Naemura J, et al.: Complementarity determining region 1 (CDR1)- and CDR3-ana-lagousregions inCTLA-4andCD28 determine the binding to B7-1. J Exp Med 1994;180:2049–2058.

    PubMed  CAS  Google Scholar 

  50. Shahinian A, Pfeffer K, Lee KP, Kundig TM, Kishihara K, Wakeham A, et al.: Differential T cell costimulatory requirements in CD28 deficient mice. Science 1993;261:609–612.

    PubMed  CAS  Google Scholar 

  51. Green JM, Noel PJ, Sperling AI, Walunas TL, Gray GS, Bluestone JA, et al.: Absence of B7-dependent responses in CD28-deficient mice. Immunity 1994;1:501–508.

    PubMed  CAS  Google Scholar 

  52. Freeman GJ, Bordello R, Hodes RJ, Reiser H, Si HK, Laszlo G, et al.: Uncovering of functional alternative CTLA-4 counter-receptor in B7-deficient mice. Science 1993; 262:907–909.

    PubMed  CAS  Google Scholar 

  53. Borrielo F, Sethna MP, Boyd SD, Schweitzer AN, Tivol EA, Jacoby D,Strom TB,et al.:B7-l and B7-2 have overlapping, critical roles in immunoglobulin class switching and germinal center formation. Immunity 1997:303–313.

  54. Schweitzer AN, Sharpe AH: Studies using antigen-presenting cells lacking expression of both B7-1 (CD80) and B7-2 (CD86) show distinct requirements for B7 molecules during priming versus restimulation of Th2 but not Thl cytokine production. J Immunol 1998;161:2762–2771.

    PubMed  CAS  Google Scholar 

  55. June CH, Ledbetter JA, Gillespie MM, Lindsten T, Thompson CB: T-cell proliferation involving the CD28 pathway is associated with cyclosporine-resistant interleukin 2 gene expression. Mol Cell Biol 1987;7(12):4472–4481.

    PubMed  CAS  Google Scholar 

  56. Alberola-Ila J, Takaki S, Kerner JD, Perlmutter RM: Differential signaling by lymphocyte antigen receptors. Ann Rev Immunol 1997;15:125–154.

    CAS  Google Scholar 

  57. Allison JP: CD28-B7 interactions in T-cell activation. Curr Opinion Immunol 1994;6:414–419.

    CAS  Google Scholar 

  58. Bluestone JA: New perspectives of CD28-B7-mediated T cell costimulation. Immunity 1995;2:555–559.

    PubMed  CAS  Google Scholar 

  59. Cantrell D: T cell antigen receptor signal transduction pathways. Annu Rev Immunol 1996; 14: 259–574.

    PubMed  CAS  Google Scholar 

  60. Ashwell JD, Klausner RD:Genetic and mutational analysis of the T cell antigen receptor. Ann Rev Immunol 1990;8:139–167.

    CAS  Google Scholar 

  61. Clevers H, Alarcon B, Wileman T, Terhorst C: The T cell receptor/ CD3 complex: a dynamic protein ensemble. Ann Rev Immunol 1988; 6:629–662.

    CAS  Google Scholar 

  62. Reth M: Antigen receptor tail clue. Nature 1989;338:383–384.

    PubMed  CAS  Google Scholar 

  63. Baniyash M, Garcia-Morales P, Luong E, Samelson LE, Klausner RD: The T cell receptor ζ chain is tyrosine phosphorylated upon activation. J Biol Chem 1988; 263:9874–9878.

    PubMed  CAS  Google Scholar 

  64. Alberola-Ila J, Places L, de la Calle O, Romero M, Yagüe J, Gallart T, et al.: Stimulation through the TCR/CD3 complex up-regulates the CD2 surface expression on human T-lymphocytes. J Immunol 1991;146: 1085–1092.

    PubMed  CAS  Google Scholar 

  65. Chan AC, Iwashima M, Turck CW, Weiss A: ZAP-70: a 70 kD protein-tyrosine that associates with the TCR ζ chain. Cell 1992; 71:649–662.

    PubMed  CAS  Google Scholar 

  66. Granja C, Lin L, Yunis EJ, Relias V, DasGupta JD. PLCγl: a possible mediator of T cell receptor function. J Biol Chem 1991;266: 16,277–16,280.

    CAS  Google Scholar 

  67. Secrist JP, Karnitz L, Abraham RT. T-cell antigen receptor ligation induces tyrosine phosphorylation of phospholipase C-γl. J Biol Chem 1991;266:12,135.

    CAS  Google Scholar 

  68. Weiss A, Littman DR: Signal transduction by lymphocyte antigen receptors. Cell 1994;76:263–274.

    PubMed  CAS  Google Scholar 

  69. Park DJ, Rho HW, Rhee SG: CD3 stimulation causes phosphorylation of phospholipase Cγl on serine and tyrosine residues in a human T cell line. Proc Natl Acad Sci USA 1991;88:5453–5457.

    PubMed  CAS  Google Scholar 

  70. Downward J, Graves J, Cantrell D: The regulation and function of p21ras in T cells. Immunol Today 1992;13(3):89–92.

    PubMed  CAS  Google Scholar 

  71. Franklin RA, Tordai A, Patel H, Gardner AM, Johnson GL, Gelfand EW: Ligation of the T cell receptor complex results in activation of the Ras/Raf-1/MEK/MAPK cascade in human T lymphocytes. J Clin Invest 1994;93:2134–2140.

    PubMed  CAS  Google Scholar 

  72. McKormick F:Howreceptors turn Ras on. Nature 1993;363:15,16.

    Google Scholar 

  73. Ravichandran KS, Lee KK, Zhou SY, Cantley LC, Burn P, Burakoff SJ: Interaction of SHC with the zeta-chain of the T-cell receptor upon T-cell activation. Science 1993;262:902–905.

    PubMed  CAS  Google Scholar 

  74. Robinson MJ, Cobb MH: Mitogen-activated protein kinase pathways. Curr Opinion Cell Biol 1997; 9:180–186.

    PubMed  CAS  Google Scholar 

  75. Ip YT, Davis RJ: Signal transduction by the c-Jun N-terminal kinase (JNK)-from inflammation to development. Curr Opinion Cell Biol 1998;10:205–219.

    PubMed  CAS  Google Scholar 

  76. Cano E, Mahadevan LC: Parallel signal processing among mammalian MAPKs. Trends Biochem Sci 1995;20:117–122.

    PubMed  CAS  Google Scholar 

  77. Genot E, Cleverley S, Henning S, Cantrell D: Multiple p21ras effector pathways regulate nuclear factor of activated T cells. EMBO J 1996;15:3923–3933.

    PubMed  CAS  Google Scholar 

  78. Fields PE, Gajewski TF, Fitch FW: Blocked Ras activation in anergic CD4+T cells. Science 1996;271: 1276–1278.

    PubMed  CAS  Google Scholar 

  79. DeSilva DR, Jones EA, Favata MF, Jaffee BD, Magolda RL, Trzaskos JM, et al.: Inhibition of mitogen-activated protein kinase kinase blocks T cell proliferation but does not induce or prevent anergy. J Immunol 1998;160: 4175–4181.

    PubMed  CAS  Google Scholar 

  80. Crespo P, Bustelo XR, Aaronson DS, Coso OA, Lopez-Barahona M, Barbacid M, et al.: Rac-1 dependent stimulation of the JNK/ SAPK signaling pathway by Vav. Oncogene 1996;13:455–460.

    PubMed  CAS  Google Scholar 

  81. Vojtek AB, Cooper JA:Rho family members: activators of MAPK cascades. Cell 1995;82:527–529.

    PubMed  CAS  Google Scholar 

  82. Enslen H, Raingeaud J, Davis RJ: Selective Activation of p38 Mitogen-activated (MAP) kinase isoforms by the MAPK kinases MKK3 and MKK6. J Biol Chem 1998; 273(3): 1741–1748.

    PubMed  CAS  Google Scholar 

  83. Han J, Lee, JD, Jiang Y, Li Z, Feng L, Ulevitch RJ: Characterization of the structure and function of a novel MAPK kinase (MKK6). J Biol Chem 1996;271:2886–2891.

    PubMed  CAS  Google Scholar 

  84. Su B, Jacinto E, Hibi M, Kallunki T, Karin M, Ben-Neriah Y: Jnk is involved in signal integration during costimulation of T lymphocytes. Cell 1994;77:727–736.

    PubMed  Google Scholar 

  85. Avraham A, Jung S, Samuels Y, Seger R, Ben-Neriah Y: Co-stimulation-dependent activation of a JNK-kinase in T lymphocytes. Eur J Immunol 1998;28(8):2320–2330.

    PubMed  CAS  Google Scholar 

  86. Cobb MH, Goldsmith EJ: How MAPKs are regulated. J Biol Chem 1995;270:14,843–14,846.

    CAS  Google Scholar 

  87. Ledbetter JA, Parsons M, Martin PJ, Hansen JA, Rabinovich PS, June CH: Antibody binding to CD5 (Tp67) and Tp44 T cell surface molecules: effects on cyclic nucleotides, cytoplasmic free calcium, and cAMP-mediated suppression. J Immunol 1986; 137: 3299–3305.

    PubMed  CAS  Google Scholar 

  88. Ledbetter JA, Imboden JB, Schieven GL, Grosmaire LS, Rabinovitch PS, Lindsten T, et al.: CD28 ligation in T cell activation: evidence for two signal transduction pathways. Blood 1990;75:1531–1539.

    PubMed  CAS  Google Scholar 

  89. Ward SG:CD28:a signalling perspective. Biochem J 1996;318: 361–377.

    PubMed  CAS  Google Scholar 

  90. Ledbetter JA, Linsley PS: CD28 receptor crosslinking induces tyrosine phosphorylation of PLC gamma 1. Adv Exp Med Biol 1992; 323:23–27.

    PubMed  CAS  Google Scholar 

  91. Ward SG, Wilson A, Turner L, Westwick J, Sansom DM: Inhibition of CD28-mediated T cell costimulation by the phosphoinositide 3-kinase inhibitor wortmannin. Eur J Immunol 1995;25: 526–532.

    PubMed  CAS  Google Scholar 

  92. Hutchcroft JE, Bierer BE: Activation-dependent phosphorylation of the T-lymphocyte surface receptor CD28 and associated proteins. Proc Natl Acad Sci USA 1994;91: 3260–3264.

    PubMed  CAS  Google Scholar 

  93. Pages F, Ragueneau M, Rottapel R, Truneh A, Nunes J, Imbert J, et al.: Binding of phosphatidylinositol-3-OH kinase to CD28 is required for T-cell signalling. Nature 1994;369:327–329.

    PubMed  CAS  Google Scholar 

  94. August A, Dupont B: Activation of src family kinase lck following CD28 crosslinking in the Jurkat leukemic cell line. Biochem Biophys Res Commun 1994; 199: 1466–1473.

    PubMed  CAS  Google Scholar 

  95. Siliciano JD, Marrow TA, Desiderio SV: Itk, a T-cell-specific tyrosine kinase gene inducible by interleukin 2. Proc Natl Acad Sci USA 1992;89:11,194–11,198.

    CAS  Google Scholar 

  96. Heyeck SD, Berg LJ: Developmental regulation of a murine T cell-specific tyrosine kinase gene, Tsk. Proc Nat Acad Sci USA 1993; 90:669–673.

    PubMed  CAS  Google Scholar 

  97. Gibson S, Leung B, Squire JA, Hill A, Arima N, Goss P, et al.: Identification, cloning and characterization of a novel human T cell specific kinase located at the hematopoeitin complex on chromosome 5q. Blood 1993;82:1561–1572.

    PubMed  CAS  Google Scholar 

  98. Tsukada S, Saffran DC, Rawlings DJ, Parolini O, Allen RC, Klisak I, et al.: Deficient expression of a B cell cytoplasmic tyrosine kinase in human X-linked agammaglobulinemia. Cell 1993;72:279.

    PubMed  CAS  Google Scholar 

  99. Mano H, Ishikama F, Nishida J, Hirai H, Takaku F: A novel protein-tyrosine kinase, tec, is preferentially expressed in liver. Oncogene 1990;5:1781–1786.

    PubMed  CAS  Google Scholar 

  100. Haire RN, Ohta Y, Lewis JE, Fu SM, Kroisel P, Littman GW: TXK, a novel human tyrosine kinase expressed inT cells shares sequence homology with Tec family kinases and maps to chromosome 4p12. HumMol Genet 1994;3:897–901.

    CAS  Google Scholar 

  101. Tamagnone L, Lahtinen I, Mustonen T, Virtaneva K, Francis F, Muscatelli F, et al.: BMX, a novel nonreceptor tyrosine kinase of the BTK/ITK/TEC/TXK family located in chromosome Xp22.2. Oncogene 1994;9:3683–3688.

    PubMed  CAS  Google Scholar 

  102. Lemmon MA, Ferguson KM, Schlessinger J: PH domains: diverse sequences with a common fold recruit signaling molecules to the cell surface. Cell 1996;85:621–624.

    PubMed  CAS  Google Scholar 

  103. August A, Gibson S, Kawakami Y, Kawakami T, Mills GB, Dupont B: CD28 is associated with and induces the immediate tyrosine phosphorylation and activation of the Tec family kinase Itk/Emt in the human Jurkat leukemic T cell line. Proc Natl Acad Sci USA 1994;91:9347–9351.

    PubMed  CAS  Google Scholar 

  104. Marengere LEM, Okkenhaug K, Clavreul A, Couez D, Gibson S, Mills GB, et al.: The SH3 domain of Itk/Emt binds to proline-rich sequences in the cytoplasmic domain of the T cell costimulatory receptor CD28. J Immunol 1997; 159:3220–3229.

    PubMed  CAS  Google Scholar 

  105. Raab M, Cai Y-C, Bunnell SC, Heyeck SD, Berg LJ, Rudd CE: p56Lck and p59Fyn regulate CD28 binding to phosphatidylinositol 3-kinase, growth factor receptorbound protein GRB-2, and T cell-specific protein-tyrosine ITK: implications for T-cell costimulation. Proc Natl Acad Sci USA 1995;92:8891–8895.

    PubMed  CAS  Google Scholar 

  106. Gibson S, August A, Branch D, Dupont B, Mills GB: Functional lck is required for optimal CD28-mediated activation of the TEC family tyrosine kinase EMT/Itk. J Biol Chem 1996;271 (12): 7079–7083.

    PubMed  CAS  Google Scholar 

  107. Heyeck SD, Wilcox HM, Bunnell SC, Berg LJ: Lck phosphorylates the activation loop tyrosine of the Itk kinase domain and activates Itk kinase activity. J Biol Chem 1997; 272(40):25,401–25,408.

    CAS  Google Scholar 

  108. Liao XC, Littman DR: Altered T: cell receptor signaling and disrupted T cell development in mice lacking Itk. Immunity 1995;3: 757–769.

    PubMed  CAS  Google Scholar 

  109. Liao XC, Fournier S, Killeen N, Weiss A, Allison JP, Littman DR: Itk negatively regulates induction of T cell proliferation by CD28 costimulation. J Exp Med 1997; 186(2):221–228.

    PubMed  CAS  Google Scholar 

  110. Liu K-Q, Bunnell SC, Gurniak CB, Berg LJ: T cell receptor-initiated calcium release is uncoupled from capacitative calcium entry in Itk-deficient T cells. J Exp Med 1998;187(10):1721–1727.

    PubMed  CAS  Google Scholar 

  111. Nunes J, Klasen S, Franco MD, Lipcey C, Mawas C, Bagnasco M, et al.: Signalling through CD28 T-cell activation pathway involves an inositol phospholipid-specific phospholipase C activity. Biochem J 1993;293:835–842.

    PubMed  CAS  Google Scholar 

  112. Weiss A, Manger B, Imboden J: Synergy between the T3/antigen receptor complex and Tp44 in the activation of human T cells. J Immunol 1986;137:819–825.

    PubMed  CAS  Google Scholar 

  113. Van Lier RA, Brouwer M, De Groot ED, Kramer I, Aarden LA, Verhoeven AJ: T cell receptor/ CD3 and CD28 use distinct intracellular signaling pathways. Eur J Immunol 1991;21:1775–1778.

    PubMed  Google Scholar 

  114. Nunes JA, Collette Y, Truneh A, Olive D, Cantrell DA: The role of p21ras in CD28 signal transduction: triggering of CD28 with antibodies, but not the ligand B7-1, activates p21 ras. J Exp Med 1994; 180:1067–1076.

    PubMed  CAS  Google Scholar 

  115. Nunes JA, Battifora M, Woodgett JR, Truneh A, Olive D, Cantrell D: CD28 signal transduction pathways. A comparison of B7-1 and B7-2 regulation of the MAPKs: ERK2 and JUN kinases. Mol Immunol 1996;33(1):63–70.

    PubMed  CAS  Google Scholar 

  116. Schneider H, Cai Y-C, Prasad KVS, Shoelson SE, Rudd CE: T cell antigen CD28 binds to the GRB-2/SOS complex, regulators ofp21ras. EurJ Immunol 1995;24: 1044–1050.

    Google Scholar 

  117. Reedquist KA, Bos, JL: Costimulation through CD28 suppresses T cell receptor-dependent activation of the Ras-like small GTPase Rapl in human T lymphocytes. J BiolChem 1998;273:4944–4949.

    CAS  Google Scholar 

  118. Bos JL, Franke B, M’Rabet L, Reedquist K, Zwartkruis F: Un search of a function for the Raslike GTPase Rap 1. FEBS Lett 1997; 410(1):59–62.

    PubMed  CAS  Google Scholar 

  119. Nunes JA, Truneh A, Olive D, Cantrell DA: Signal transduction by CD28 costimulatory receptor on T cells. B7-1 and B7-2 regulation of tyrosine kinase adaptor molecules. J Biol Chem 1996;271: 1591–1598.

    PubMed  CAS  Google Scholar 

  120. Crespo P, Schuebel KE, Ostrom AA, Gutkind JS, Bustelo XR: Phosphotyrosine-dependent activation of Rac-1 GDP/GTP exchange by the vav proto-oncogene product. Nature 1997;385:169–172.

    PubMed  CAS  Google Scholar 

  121. Cantrell D: Lymphocyte signalling: A coordinating role for Vav? Curr Biol 1998;8:R535-R538.

    PubMed  CAS  Google Scholar 

  122. Kaga S, Ragg S, Rogers KA, Ochi A: Activation of p21-CDC42/ Rac-activated kinases by CD28 signaling:p21-activated kinase (PAK)andMEKkinase 1 (MEKK1) may mediate the interplay between CD3 and CD28 signals. J Immunol 1998:4182–4189.

  123. Boucher L-M, Wiegmann K, Futterer A, Pfeffer K, Machleidt T, Schutze S, et al.: CD28 signals through acidic sphingomyelinase. J Exp Med 1995;181:2059–2068.

    PubMed  CAS  Google Scholar 

  124. Chan G, Ochi A: Sphingomyelinceramide turnover in CD28 costimulatory signaling. Eur J Immunol 1995;25:1999–2004.

    PubMed  CAS  Google Scholar 

  125. Kapeller R, Cantley LC:Phosphatidylinositol 3-Kinase. Bioessays 1995;16:565–576.

    Google Scholar 

  126. Hutchcroft JE, Bierer BE: Signaling through CD28/CTLA-4 family receptors—puzzling participation of phosphatidylinositol-3 kinase. J Immunol 1996; 156: 4071–4074.

    PubMed  CAS  Google Scholar 

  127. Chung J, Grammer TC, Lemon KP, Kazlauskas A, Blenis J: PDGF- and insulin-dependent pp70s6k activation mediated by phosphatidylinositol-3-OH kinase. Nature 1994;370:71–75.

    PubMed  CAS  Google Scholar 

  128. Weng QP, Andrabi K, Kippel A, Kozlowski, MT, Williams LT, Avruch J: Phosphatidylinositol 3-kinase signals activation of p70 S6 kinase in situ through site-specific p70 phosphorylation. Proc Natl Acad Sci USA 1995;92: 5744–5748.

    PubMed  CAS  Google Scholar 

  129. Toker A, Meyer M, Reddy KK, Falck J, Aneja R, Aneja S, et al.: Activation of protein kinse C family members by the novel polyphosphoinositides PtdIns-3,4-P2 and PtdIns-3,4,5-P3. J Biol Chem 1994;269:32,358–32,367.

    CAS  Google Scholar 

  130. Moriya S, Kazlauskas A, Akimoto K, Hirai S-i, Mizuno K, Takenawa T, et al.: Platelet-derived growth factor activates protein kinase Cε through redundant and independent signaling pathways involving phospholipase Cγ or phosphatidylinositol 3-kinase. Prod Natl Acad Sci USA 1996;93:151–155.

    CAS  Google Scholar 

  131. Parry RV, Reif K, Smith G, Sansom DM, Hemmings BA, Ward SG: Ligation of the T cell co-stimulatory receptor CD28 activated the serine-threonin-protein kinase protein kinase B. Eur J Immunol 1997;27:2495–2501.

    PubMed  CAS  Google Scholar 

  132. Franke TF, Yang SI, Chan TO, Datta K, Kazlauskas A, Morrison DK, et al.: The protein kinase encoded by the AKT proto-oncogene is a target of the PDGF-activated phosphatidylinositol 3-Kinase. Cell 1995; 81:727–736.

    PubMed  CAS  Google Scholar 

  133. Burgering BMT, Coffer PJ: Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature 1995;376: 599–602.

    PubMed  CAS  Google Scholar 

  134. Reif K, Burgering B, Cantrell DA: Phosphatidylinositol 3-kinase links the interleukin-2 receptor to protein kinase B and p70 S6 kinase. J Biol Chem 1997;272(22): 14,426–14,433.

    CAS  Google Scholar 

  135. Cefai D, Cai Y-C, Hu H, Rudd C: CD28 co-stimulatory regimes differ in their dependence on phosphatidylinositol 3-kinase: common cosignais induced by CD80 and CD86. Int Immunol 1996;8(10): 1609–1616.

    PubMed  CAS  Google Scholar 

  136. Ghiotto-Ragueneau M, Battifora M, Truneh A, Waterfield MD, Olive D: Comparison of CD28-B7.1 and B7.2 functional interaction in resting human T cells: phosphatidylinositol 3-kinase association to CD28 and cytokine production. Eur J Immunol 1996;26:34–41.

    PubMed  CAS  Google Scholar 

  137. Ueda Y, Levine BL, Huang ML, Freeman GJ, Nadler LM, June CH, et al: Both CD28 ligands CD80 (B7-1) and CD86 (B7-2) activate phosphatidylinositol 3-kinase, and wortmannin reveals heterogeneity in the regulation of T cell IL-2 secretion. Int Immunol 1995;7: 957–966.

    PubMed  CAS  Google Scholar 

  138. Truitt KE, Hicks CM, Imboden JB: Stimulation of CD28 Triggers an Association between CD28 and Phosphatidylinositol 3-kinase in Jurkat T cells. J Exp Med 1994; 179:1071–1076.

    PubMed  CAS  Google Scholar 

  139. Stein PH, Fraser JD, Weiss A:The cytoplasmic domain of CD28 is both necessary and sufficient for costimulation of interleukin-2 secretion and association with phosphatidylinositol 3′-kinase. Mol Cell Biol 1994;14(5):3392–3402.

    PubMed  CAS  Google Scholar 

  140. August A, Dupont B: CD28 of T lymphocytes associates with phosphatidylinositol 3-kinase. Int Immunol 1994;6(5):769–774.

    PubMed  CAS  Google Scholar 

  141. Reif K, Lucas S, Cantrell D: A negative role for phosphoinositide 3-kinase in T-cell antigen receptor function. Curr Biol 1997;7:285–293.

    PubMed  CAS  Google Scholar 

  142. Cai Y-C, Cefai D, Schneider H, Raab M, Nabavi N, Rudd CE:Selective CD28pYMNM mutations implicate phosphatidylinositol 3-kinase in CD86-CD28-mediated costimulation. Immunity 1995;3: 417–426.

    PubMed  CAS  Google Scholar 

  143. Truitt KE, Shi J, Gibson S, Segal LG, Mills GB, Imboden JB: CD28 delivers costimulatory signals independently of its association with phosphatidylinositol 3-kinase. J Immunol 1995; 155:4702–4710.

    PubMed  CAS  Google Scholar 

  144. Crooks MEC, Littman DR, Carter RH, Fearon DT, Weiss A, Stein PH: CD28-mediated costimulation in the absence of phosphatidylinositol 3-kinase association and activation. Mol Cell Biol 1995; 15:6820–6828.

    PubMed  CAS  Google Scholar 

  145. Pages F, Ragueneau M, Klasen S, Battifora M, Couez D, Sweet R, et al.: Two distinct intracytoplasmic regions of the T-cell adhesion molecule CD28 participate in phosphotidylinositol 3-kinase association. J Biol Chem 1996;271: 9403–9409.

    PubMed  CAS  Google Scholar 

  146. Shimizu Y, van Seventer GA, Ennis E, Newman W, Horgan KJ, Shaw S: Crosslinking of the T cell-specific accessory molecules CD7 and CD28 modulates T cell adhesion. J Exp Med 1992; 175(2):577–582.

    PubMed  CAS  Google Scholar 

  147. Zell T III SWH, Mobley JL, Finkelstein LD, Shimizu Y: CD28-mediated upregulation of β1 integrin-mediated adhesion involves phosphatidylinositol 3-kinase. J Immunol 1996; 156:883–886.

    PubMed  CAS  Google Scholar 

  148. Zell T, Warden CS, Chan ASH, Cook ME, Dell CL, ILL SWH, Shimizu Y: Regulation of β1 integrin-mediated cell adhesionby the Cb1 adapter protein. Curr Biol 1998;8:814–822.

    PubMed  CAS  Google Scholar 

  149. Takai Y, Sasaki T, Tanaka K, Nakanishi H: Rho as a regulator of the cytoskeleton. Trends in Biochem Sci 1995;20:227–231.

    CAS  Google Scholar 

  150. Carrera A, Rodriguez-Borlado L, Martinez-Alonso C, Merida I: T cell receptor-associated alphaphosphatidylinositol 3-kinase becomes activated by T cell receptor cross-linking and requires pp56(lck). J Biol Chem 1994;269: 19,435–19,440.

    CAS  Google Scholar 

  151. Gimmi CD, Freeman GJ, Gribben GJ, Sugita K, Freeman AS, Morimoto C, et al.: B cell surface antigenB7/BB-l provide a costimulatory signal that induces T cells to proliferate and secrete interleukin 2. Proc Nat Acad Sci USA 1991;88:6575–6579.

    PubMed  CAS  Google Scholar 

  152. Linsley PS, Brady W, Grosmaire L, Aruffo A, Damle NK, Ledbetter JA: Binding of the B cell activation antigen B7 to CD28 costimulates T cell proliferation and interleukin 2 mRNA accumulation. J Exp Med 1991;173:721–730.

    PubMed  CAS  Google Scholar 

  153. Fraser JD, Weiss A: Regulation of T-cell lymphokine gene transcription by the accessory molecule CD28. MolCellBiol 1992;12(10): 4357–4363.

    CAS  Google Scholar 

  154. Ghosh P, Tan T, Rice NR, Sica A, Young HA: The interleukin 2 CD28-responsive complex contains at least three members of the NF kappa B family: c-Rel, p50, and p65. Proc Nat Acad Sci USA 1993;90:1696–1700.

    PubMed  CAS  Google Scholar 

  155. Wechsler AS, Gordon MC, Dendorfer U, Leclair KP: Induction of IL-8 expression in T cells uses the CD28 costimulatory pathway. J Immunol 1994; 153:2515–2523.

    PubMed  CAS  Google Scholar 

  156. Nelson PJ, Kim HT, Manning WC, Goralski TJ, Krensky AM: Genomic organization and transcriptional regulation of the RANTES chemokine gene. J Immunol 1993; 151:2601–2612.

    PubMed  CAS  Google Scholar 

  157. Gerondakis S, Strasser A, Metcalf D, Grigoriadis G, Scheerlinck JY, Grumont RJ: Rel-deficient T cells exhibit defects in production of interleukin-3 and granulocytemacrophage colony-stimulating factor. Proc Natl Acad Sci USA 1996;93(8):3405–3409.

    PubMed  CAS  Google Scholar 

  158. Butscher WG, Powers C, Olive M, Vinson C, Gardner K: Coordinate transactivation of the interleukin-2 CD28 response element by c-Rel and ATF-1/CREB2. J Biol Chem 1998;273(1):552–560.

    PubMed  CAS  Google Scholar 

  159. Pai SY, Calvo V, Wood M, Bierer BE: Cross-linking CD28 leads to activation of 70-kDa S6 kinase. Eur J Immunol 194;24:2364-2368.

  160. Boussiotis VA, Gribben JG, Freeman GJ, Nadler LM: Blockade of the CD28 co-stimulatory pathway: a means to induce tolerance. Curr Opinion Immunol 1994;6: 797–807.

    CAS  Google Scholar 

  161. Harding FA, McArthur JG, Gross JA, Raulet D, Allison JP: CD28-mediated signalling co-stimulates murine T cells and prevents induction of anergy in T-cell clones. Nature 1992;356:607–609.

    PubMed  CAS  Google Scholar 

  162. Tan P, Anasetti C, Hansen JA, Melrose J, Brunvand M, Bradshaw J, et al.: Induction of alloantigen-specific hyporesponsiveness in human T lymphocytes by blocking interaction of CD28 with its natural ligand B7/BB1. J Exp Med 1993;177(1):165–173.

    PubMed  CAS  Google Scholar 

  163. Boise LH, Minn AJ, Noel PJ, June CH, Accavitti MA, Lindsten T, et al.: CD28 costimulation can promote T cell survival by enhancing the expression of Bcl-xL. Immunity 1995;3:87–98.

    PubMed  CAS  Google Scholar 

  164. Yang XF, Weber GF, Cantor H: A novel Bcl-x isoform connected to the T cell receptor regulates apoptosis in T cells. Immunity 1997;7: 629–639.

    PubMed  CAS  Google Scholar 

  165. Lenschow DJ, Zeng Y, Thistlethwaite JR, Montag A, Brady W, Gibson MG, et al.: Long-term survival of xenogeneic pancreatic islet grafts induced by CTLA4Ig. Science 1992;257:789–792.

    PubMed  CAS  Google Scholar 

  166. Turka LA, Linsley PS, Lin H, Brady W, Leiden JM, Wei RQ, et al.: T-cell activation by the CD28 ligand B7 is required for cardiac allograft rejection in vivo. Proc Natl Acad Sci USA 1992; 89:11,102–11,105.

    CAS  Google Scholar 

  167. Guinan EC, Gribben JG, Boussiotis VA, Freeman GJ, Nadler LM: Pivotal role of the B7-CD28 pathway in transplantation tolerance and tumor immunity. Blood 1994;84:3261–3282.

    PubMed  CAS  Google Scholar 

  168. Li Y, McGowan P, Hellstrom I, Hellstrom KE, Chen L. Costimulation of tumor-reactive CD4+ and CD8+ T lymphocytes by B7, a natural ligand for CD28, can be used to treat established mouse melanoma. J Immunol 1994;153: 421–428.

    PubMed  CAS  Google Scholar 

  169. Townsend SE, Allison JP: Tumor rejection after direct costimulation of CD8+ T cells by B7-transfected melanoma cells. Science 1993; 259:368–370.

    PubMed  CAS  Google Scholar 

  170. Chen L, Ashe S, Brady WA, Hellstrom I, Hellstrom KE, Ledbetter JA, et al.: Costimulation of antitumor immunity by the B7 counterreceptor for the T lymphocyte molecules CD28 and CTLA-4. Cell 1992;71:1093–1102.

    PubMed  CAS  Google Scholar 

  171. Khoury SJ, Akalin E, Chandraker A, Turka LA, Linsley PS, Sayegh MH, et al.: CD28-B7 costimulatory blockade by CTLA4Ig prevents actively induced experimental autoimmune encephalomyelitis and inhibits Thl but spares Th2 cytokines in the central nervous system. JImmunol 1995:4521–4524.

  172. Finck BK, Linsley PS, Wofsy D: Treatment of murine lupus with CTLA-4Ig. Science 1994;265: 1225–1227.

    PubMed  CAS  Google Scholar 

  173. Kuchroo VK, Das MP, Brown JA, Ranger AM, Zamvil SS, Sobel RA, et al.:B7-1 and B7-2 costimulatory molecules activate differentially the Thl/Th2 developmental pathways: application to autoimmune disease therapy. Cell 1995; 80:707–718.

    PubMed  CAS  Google Scholar 

  174. Lenschow DJ, Ho SC, Sattar H, Rhee L, Gray G, Nabavi N, et al.: Differential effects of anti-B7-l and anti-B7-2 monoclonal antibody treatment on the development of diabetes in the nonobese diabetic mouse. J Exp Med 1995; 181:1145–1155.

    PubMed  CAS  Google Scholar 

  175. Matulonis U, Dosiou C, Freeman G, Lamont C, Mauch P, Nadler LM, et al.: B7-1 is superior to B7-2 costimulation in the induction and maintenance of T cell-mediated antileukemia immunity. J Immunol 1996;156:1126–1131.

    PubMed  CAS  Google Scholar 

  176. Racke MK, Scott DE, Quigley L, Gray GS, Abe R, June CH, et al.: Distinctroles forB7-l (CD80)and B7-2 (CD86) in the initiation of experimental allergic encephalomyelitis. J Clin Invest 1995;96: 2195–2203.

    PubMed  CAS  Google Scholar 

  177. Gajewski TF. B7-1 but not B7-2 efficiently costimulates CD8+ T lymphocytes in the P815 tumor system in vitro. J Immunol 1996: 465–472.

  178. Eck SC, Chang D, Wells AD, Turka LA: Differential down-regulation of CD28 by B7-1 and B7-2 engagement. Transplantation 1997;64(10):1497-.

    PubMed  CAS  Google Scholar 

  179. Freeman GJ, Boussiotis VA, Anumanthan A, Bernstein GM, Ke X-Y, Rennert PD, et al.: B7-1 and B7-2 do not deliver identical costimulatory signals, since B7-2 but not B7-1 preferentially costimulates the initial production of IL-4. Immunity 1995;2:523–532.

    PubMed  CAS  Google Scholar 

  180. Sigal LJ, Reiser H, Rock KL: The role of B7-1 and B7-2 costimulation for the generation of CTL responses in vivo. J Immunol 1998; 161:2740–2745.

    PubMed  CAS  Google Scholar 

  181. Anderson DE, Ausubel LJ, Kreiger J, Hollsberg P, Freeman GJ, Hafler DA: Weak peptide agonists reveal functional differences in B7-1 and B7-2 costimulation of human T cell clones. J Immunol 1997;159:1669–1675.

    PubMed  CAS  Google Scholar 

  182. Ollson C, Michaelsson E, Parra E, Ui P, Lando PA, Dohlstein M: Biased dependency of CD80 versus CD86 in th induction of transcription factors regulating the human IL-2 promoter. Int Immunol 1998;10(4):499–506.

    Google Scholar 

  183. Lanier LL, O’Fallon S, Somoza C, Phillips JH, Linsley PS, Okumura K, et al.: CD80 (B7) and CD86 (B70) provide similar costimulatory signals for T cell proliferation, cytokine production, and generation of CTL. J Immunol 1995:97–105.

  184. Natesan M, Razi-Wolf Z, Reiser H: Costimulation of IL-4 production by murine B7-1 and B7-2 molecules.J Immunol 1996:2783–2791.

  185. Gribben JG, Freeman GJ, Boussiotis VA, Rennert P, Jellis CL, Greenfield E, et al.: CTLA4 mediated costimulation induces apoptosis of activated human T lymphocytes. Proc Natl Acad Sci USA 1994;92:811–815.

    Google Scholar 

  186. Krummel MF, Allison JP. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J Exp Med 1995;182:459–465.

    PubMed  CAS  Google Scholar 

  187. Krummel MF, Allison JP:CTLA-4 engagement inhibits IL-2 accumulation and cell cycle progression upon activation of resting T cells. J Exp Med 1996;183:2533–2540.

    PubMed  CAS  Google Scholar 

  188. Tivol EA, Schweitzer AN, Sharpe AH: Costimulation and autoimmunity. Curr Opinion Immunol 1996;8:822–830.

    CAS  Google Scholar 

  189. Tivol EA, Bordello F, Schweitzer AN, Lynch WP, Bluestone JA, Sharpe AH: Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tisssue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 1995;3:541–547.

    PubMed  CAS  Google Scholar 

  190. Waterhouse P, Penninger JM, Timms E, Wakeman A, Shahinian A, Lee KP, et al.: Lymphoproliferative disorders with early lethality in mice deficient in CTLA-4. Science 1995;270:985–988.

    PubMed  CAS  Google Scholar 

  191. Chambers CA, Cado D, Truong T, Allison JP: Thymocyte development is normal in CTLA-4-deficient mice. Proc Natl Acad Sci USA 1997;94:9296–9301.

    PubMed  CAS  Google Scholar 

  192. Chambers CA, Allison JP: The role of tyrosine phosphorylation and PTP1C in CLTA-4 signal transduction. Eur J Immunol 1996; 26:3224–3229.

    PubMed  CAS  Google Scholar 

  193. Walunas TL, Bakker CY, Bluestone JA: CTLA-4 ligation blocks CD28-dependent T cell activation. J Exp Med 1996;183:2541–2550.

    PubMed  CAS  Google Scholar 

  194. Marengere LEM, Waterhouse P, Duncan GS, Mittrucker H-W, Feng G-S, Mak T: Regulation of T cell receptor signaling by tyrosine phosphatase SYP association with CTLA-4. Science 1996;272: 1170–1173.

    PubMed  CAS  Google Scholar 

  195. Chambers CA, Sullivan TJ, Allison JP: Lymphoproliferation in CTLA-4 deficient mice is mediated by costimulation-dependent activation of CD4+ T cells. Immunity 1997;7:885–895.

    PubMed  CAS  Google Scholar 

  196. Tivol EA, Boyd SD, McKeon S, Bordello F, Nickerson P, Strom TB, et al.: CTLA4Ig prevents lymphoproliferation and fatal mutiorgan tissue destruction in CTLA-4-deficient mice. J Immunol 1997;158:5091–5094.

    PubMed  CAS  Google Scholar 

  197. Waterhouse P, Bachmann MF, Penninger JM, Ohashi PS, Mak TW. Normal thymic selection, normal viability and decreased lymphoproliferation in T cell receptor transgenic CTLA-4 deficient mice. Eur J Immunol 1997; 27:1887–1892.

    PubMed  CAS  Google Scholar 

  198. Calvo CR, Amsen D, Kruisbeek AM. Cytotoxic T lymphocyte antigen 4 (CTLA-4) interferes with extracellular signal-regulated (ERK) and jun NH2-terminal kinase (JNK) activation, but does not affect phosphorylation of T cell receptor ζ and ZAP70. JExp Med 1997;186(10): 1645–1653.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slavik, J.M., Hutchcroft, J.E. & Bierer, B.E. CD28/CTLA-4 and CD80/CD86 families. Immunol Res 19, 1–24 (1999). https://doi.org/10.1007/BF02786473

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02786473

Key Words

Navigation