Skip to main content
Log in

Development and regulation of porcine pancreatic function

  • State-of-the-Art
  • Published:
International journal of pancreatology Aims and scope Submit manuscript

Summary

A surgical and experimental procedure was developed to enable the collection of pure and inactivated pancreatic juice during the growth of the pig. Studies have shown that, during the suckling period, both the basal and the secretory responses to suckling are low, if present at all. After weaning, basal levels of the total exocrine secretion, total protein, amylase, and trypsin, respectively, increase slightly, while the postprandial levels of total protein, amylase, trypsin, lipase, colipase, and carboxylester lipase, respectively, increase markedly. The pancreatic juice enzyme composition changes qualitatively and the antibacterial activity of the pancreatic juice also significantly increases. Piglet age appeared to be of minor importance, since weaning at either 4 or 6 wk of age gave the same results. Secretin and CCK administered together in supraphysiological doses only significantly affect exocrine function from 3–4 wk of age. However, CCK may also affect the exocrine pancreas indirectly via reflexes initiated intraduodenally. Milk consumption in the suckling pig leads to a postprandial increase in glucose levels but not insulin. Milk, appears to be able to regulate the exocrine pancreas to produce only the amount and type of enzymes required for digestion. Thus, milk components or digestive products may affect pancreas function regulation. Studies show that enterostatin, the procolipase activation peptide, may inhibit pancreatic secretion mediated indirectly through the GI tract. Pancreastatin, an endocrine peptide, inhibits both insulin secretion and protein and trypsin secretion to pancreatic juice. In hypoinsulinemic (alloxan + streptozotocin diabetes) pigs (15–20 kg), no postprandial pancreatic juice response is seen, although CCK 33 + secretin can stimulate pancreatic secretion. Hypoinsulinemic pigs have a reduced capacity for glucose tissue utilization, suggesting that tissue metabolism and exocrine pancreas secretion are related.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

cAMP:

cyclic adenosine 5′-monophosphate

CCK:

cholecystokinin

CEL:

carboxyl ester lipase

GI:

gastrointestinal

GIP:

gastric inhibitory polypeptide

id:

inside diameter

i.d.:

intraduodenal

iv:

intravenous

mU:

milli unit

μU:

micro unit

od:

outside diameter

PP:

pancreatic polypeptide

PYY:

peptide YY

SBTI:

soya bean trypsin inhibitor

VIP:

vasoactive intestinal peptide

VPDPR:

valine-proline-aspartic acid-proline-asparagine=enterostatin

References

  1. Kidder DE, Manners MJ.Digestion in the Pig. Scientechnica, Bristol. 1978.

    Google Scholar 

  2. Malagelada J-R. Gastric, pancreatic, and biliary responses to a meal, inPhysiology of the Gastrointestinal Tract, Johnson LR, ed., Raven, New York, 1981; pp. 172–196.

    Google Scholar 

  3. Pitchumoni CS, Sheele G, Lee PC, Lebenthal E. Effects of nutrition in the exocrine pancreas, inThe Exocrine Pancreas: Biology, Pathobiology, and Diseases, Go VLW, Gardner JD, Brooks FP, et al., eds., Raven, New York, 1986; 387–406.

    Google Scholar 

  4. Schulz I. Bicarbonate transport in the exocrine pancreas.Ann NY Acad Sci 1980; 341: 191–209.

    Article  PubMed  CAS  Google Scholar 

  5. Sitbon G, Mialhe P. Pancreatic hormones and plasma glucose: regulation mechanisms in the goose under physiological conditions.Horm Metab Res 1978; 10: 12–16.

    PubMed  CAS  Google Scholar 

  6. Christensen K, Just A. Interactive effects of live weight, basal diet and fat on essential fatty acid status and blood concentrations of glucose, insulin, and thyroxine measured postprandially in pigs.Comp Biochem Physiol 1988; 91A: 279–291.

    Article  CAS  Google Scholar 

  7. Motyl T, Debski B, Kukulska W, Ostaszewski P, Krupa P. The influence of fasting on plasma amino acid indices and urinary nitrogen compounds excretion in wool and meat breeds rabbits.J Anim Physiol Anim Nutr 1986; 55: 110–117.

    Article  CAS  Google Scholar 

  8. Malmlöf K, Örberg J, Helberg S, Cortova Z, Björkgren S. The diurnal influence on utilisation of dietary protein in the growing pig.J Anim Physiol Anim Nutr 1990; 63: 180–187.

    Google Scholar 

  9. Wass WM. The collection of porcine pancreatic juice by cannulation of the pancreatic duct.Amer J Vet Res 1965; 26: 1106–1109.

    PubMed  CAS  Google Scholar 

  10. Corring T, Aumaitre A, Rerat A. Fistulation permanente du pancreas exocrine chez le porc application: résponse de la sècrètion pancréatique aureps.Ann Biol Anim Biochim Biophys 1972; 12: 109–124.

    Article  PubMed  CAS  Google Scholar 

  11. Zebrowska T, Low A, Zebrowska H. Studies on gastric digestion of protein and carbohydrate, gastric secretion and exocrine pancreatic secretion in the growing pig.Br J Nutr 1983; 49: 401–410.

    Article  PubMed  CAS  Google Scholar 

  12. Pierzynowski SG, Weström BR, Karlsson BW, Svendsen J, Nilsson B. Pancreatic cannulation of young pigs for longterm study of exocrine pancreatic function.Can J Anim Sci 1988a; 68: 953–959.

    Google Scholar 

  13. Pierzynowski SG, Håkansson H, Ljunggren L, Mårtensson L, Olsson L. Portable closed loop feedback system for control of the blood glucose level in the pig.Artif Organs 1990a; 14: 118–129.

    Article  PubMed  CAS  Google Scholar 

  14. Pierzynowski SG, Weström BR, Karlsson BW. Chronic models for the evaluation of the GI tract function during porcine postnatal development, inDigestive Physiology in Pigs, Proceedings of the Vth International Symposium on Digestive Physiology in Pigs, Verstegen MWA, Huisman J, den Hartog LA, eds., Pudoc Wageningen, The Netherlands. EAAP Publ. No. 55, Wageningen, 1991; pp. 289–295.

    Google Scholar 

  15. Pierzynowski SG, Weström BR, Svendsen J, Karlsson BW. Development of the exocrine pancreas function in chronically cannulated pigs during 1–13 weeks of postnatal life.J Pediatr Gastroenterol Nutr 1990b; 10: 206–212.

    PubMed  CAS  Google Scholar 

  16. Pierzynowski SG, Weström BR, Erlansson-Albertsson C, Ahrén B, Svendsen J, Karlsson BW. Induction of exocrine pancreas maturation at weaning in young developing pigs.J Pediatr Gastroenterol Nutr 1993c; 16: 287–293.

    PubMed  CAS  Google Scholar 

  17. Hee JH, Sauer WC, Berzins R, Ozimek L. Permanent re-entrant diversion of porcine pancreatic secretion.Can J Anim Sci 1985; 65: 451–457.

    Google Scholar 

  18. Makkink CA.Of Piglets, Dietary Proteins, and Pancreatic Proteases PhD Thesis. Agricultural University, Wageningen, The Netherlands. 1993; pp. 45–74.

    Google Scholar 

  19. Corring T, Aumaitre A, Durand G. Development of digestive enzymes in the piglet from birth to 8 weeks.Nutr Metab 1978; 22: 231.

    Article  PubMed  CAS  Google Scholar 

  20. Cera KR, Mahan DC, Reinhart GA. Effect of weaning and diet composition on pancreatic and small intestine luminal lipase response in young swine.J Anim Sci 1990; 68: 384–391.

    PubMed  CAS  Google Scholar 

  21. Weström BR, Pierzynowski SG, Karlsson BW, Svendsen J. Development of the exocrine pancreatic function: Response to food and hormonal stimulation in pigs from birth up to after weaning, inDigestive Physiology in the Pigs, Proceedings of the 4th International Seminar Held at the Institute of Animal Physiology and Nutrition, Buraczewska S, Buraczewski B, Pastuszewska B, Zebrowska T. eds., Institute of Animal Physiology and Nutrition. Jablonna Poland. 1988; pp. 36–43.

    Google Scholar 

  22. Weström BR, Pierzynowski SG, Karlsson BW. Digestive enzymes in relation to age and weaning in developing pigs, inThe Rat as a Model for Man and Pig in Nutritional and Physiological Studies, Proceedings, Jungvid H, Forshell LP, Eggum BO, eds., Meeting, Stenungsund, Sweden, 1990; Gramineer AB, AB, AnaylCen, Sweden: National Institute of Animal Science, Denmark, 1992; pp. 20–23.

    Google Scholar 

  23. Weström BR, Pierzynowski SG, Svendsen J, Karlsson BW. Stimulatory effect of dietary changes at weaning on the exocrine pancreas in developing pigs, inDigestive Physiology in Pigs, Proceedings of the Vth International Symposium on Digestive Physiology in Pigs, Verstegen MWA, Huisman J, den Hartog LA, eds., Pudoc, Wageningen, The Neterlands. EAAP Publ. No. 54, Wageningen. 1991; pp. 55–59.

    Google Scholar 

  24. Erlanson-Albertsson C, Weström BW, Pierzynowski SG, Karlsson S, Ahrén B. Pancreatic procolipase activation peptide—enterostatin—inhibits pancreatic enzyme secretion in the pig.Pancreas 1991; 6: 619–624.

    Article  PubMed  CAS  Google Scholar 

  25. Ahrén B, Pierzynowski SG, Weström B, Karlsson B. Pancreastatin inhibits insulin secretion and exocrine pancreatic secretion in the pig.Diabetes Res 1990; 14: 93–96.

    PubMed  Google Scholar 

  26. Pierzynowski SG.Development and Regulation of Porcine Pancreatic Function with Special Reference to the Exocrine Pancreas, PhD Thesis, Department of Animal Physiology, Faculty of Natural Sciences, University of Lund, Sweden, 1991.

    Google Scholar 

  27. Pierzynowski SG, Weström BR, Karlsson BW, Svendsen J. Development of the exocrine pancreas function: Regulatory mechanisms in pigs during early postnatal period, inDigestive Physiology in the Pigs, Proceedings of the 4th International Seminar Held at the Institute of Animal Physiology and Nutrition, Buraczewska S, Buraczewski B, Pastuszewska B, Zebrowska T., eds., Institute of Animal Physiology and Nutrition, Jablonna, Poland. 1988; pp. 44–49.

    Google Scholar 

  28. Zimmerman DW, Sarr MG, Smith CD, Nicholson CP, Dalton RR, Barr D, Perkins JD, DiMagno EP. Cyclic interdigestive pancreatic exocrine secretin: Is it mediated by neural or hormonal mechanisms?Gastroenterology 1992; 102: 1378–1384.

    PubMed  CAS  Google Scholar 

  29. Holst JJ, Schaffalitzky de Muckadell OB, Fahrenkrug J. Nervous control of pancreatic exocrine secretion in pigs.Acta Physiol Scand 1979; 105: 33–51.

    Article  PubMed  CAS  Google Scholar 

  30. Zabielski R, Podgurniak P, Pierzynowski SG, Barej W. Exocrine pancreatic function, during cold blocking of the vagus in chronic experiment of calves.Exp Physiol 1990; 75: 401–406.

    PubMed  CAS  Google Scholar 

  31. Harada E, Niiyama M, Syuto B. Comparison of pancreatic exocrine secretion via endogenous secretin by intestinal infusion of hydrochloric acid and monocarboxylic acid in anaesthetised piglets.Jap J Physiol 1986; 36: 843–856.

    Article  CAS  Google Scholar 

  32. Cuber J-C, Corring T, Levenez F, Bernard Ch, Chayvialle J-A. Effects of cholecystokinin octapeptide on pancreatic secretin in the pig.Can J Physiol Pharmacol 1989; 67: 1391–1397.

    PubMed  CAS  Google Scholar 

  33. Singer MV, Niebel W, Jansen JBMJ, Hoffmeister D, Gotthold S, Goebel H, Lamers CBHW. Pancreatic secretory response to intravenous cerulein and intraduodenal tryptophan studies: before and after stepwise removal of the extrinsic nerves of the pancreas in dogs.Gastroenterology 1989; 96: 925–934.

    PubMed  CAS  Google Scholar 

  34. Karlsson S, Ahren B. Cholecystokinin and the regulation of insulin secretionScand Gastroenterol 1992; 27: 161–165.

    Article  CAS  Google Scholar 

  35. Pierzynowski SG, Mårtensson H, Weström B, Ahrén B, Uvnäs-Moberg K, Karlsson B. Cholecystokinin (CCK-33) can stimulate pancreatic secretion by a local intestinal mechanism in the pig.Biomed Res 1993a; 14: 217–221.

    CAS  Google Scholar 

  36. Zabielski R, Onaga T, Mineo H, Kato S. Effect of peripheral and local VIP administration on secretion of exocrine pancreas and on electrical and mechanical activity of duodenum in preruminating calves.Biomedical Res 1992; 13(suppl 2): 243–246.

    Google Scholar 

  37. Ahrén B, Taborsky GJ Jr, Porte D Jr. Neuropeptidergic versus cholinergic and adrenergic regulation of islets hormone secretion.Diabetologia 1986; 29: 827–836.

    Article  PubMed  Google Scholar 

  38. de Dios I, Calvo JJ, Plaza MA, San Roman JI, Lopez MA. Betal and Beta2 adrenergic agonists in exocrine pancreatic secretion in the rabbit.Arch Int Physiol Bioch 1989; 97: 37–43.

    Article  Google Scholar 

  39. Magee DF. Does the sympathetic nervous system regulate the exocrine pancreas. Views: pro and con.Int J Pancreatol 1989; 5: 109–116.

    PubMed  CAS  Google Scholar 

  40. Lluis F, Gomez G, Fujimura M, Greeley GH Jr, Thompson JC. Peptide YY inhibits nutrient-stimulated hormonal—stimulated and vagal—stimulated pancreatic exocrine secretion.Pancreas 1987; 2: 454–462.

    Article  PubMed  CAS  Google Scholar 

  41. Orskov C, Holst JJ, Knuhtsen S, Nielsen OV, Sheikh S, Schwartz TW, Holst-Pedersen J. Secretion of glicentin glucagon-like peptide, 1 and 2 neurotensin and PYY from isolated perfused pig ileum, inGut Regulatory Peptides: Their Roles in Health and Diseas. Frontiers, of Hormone Research, Blazaques E, ed., Karger, Basel, Switzerland. 1987, pp. 137–144.

    Google Scholar 

  42. Hill LC, Zhang T, Gomez G, Greeley GH Jr. Peptide YY, a new gut hormone (a mini-review).Steroids 1991; 56: 77–81.

    Article  PubMed  CAS  Google Scholar 

  43. Case RM. Physiology and biochemistry of pancreatic exocrine secretion.Current Opinion in Gastroenterology 1989; 5: 665–681.

    Article  Google Scholar 

  44. Henquin J-C. Glucose-induced electrical activity in β-cells. Feedback control of ATP-sensitive K+ channels by Ca2+.Diabetes 1990; 39: 1457–1460.

    Article  PubMed  CAS  Google Scholar 

  45. Harada E, Kiriyama H, Kobayashi E, Tsuchita H. Postnatal development of biliary and pancratic exocrine secretion in piglets.Comp Biochem Physiol 1988; 91A: 43–51.

    CAS  Google Scholar 

  46. Chang A, Jamieson JD. Stimulus-secretion coupling in the developing exocrine pancreas: Secretory responsiveness to cholecystokinin.J Cell Biol 1986; 103: 2353–2365.

    Article  PubMed  CAS  Google Scholar 

  47. Githens S. Postnatal maturation of the exocrine pancreas in mammals.J Pediatr Gastroenterol Nutr 1990; 10: 160–163.

    PubMed  CAS  Google Scholar 

  48. Lebenthal E, Lee PC. Development of functional response in human exocrine pancreas.Pediatrics 1980; 66: 556–560.

    PubMed  CAS  Google Scholar 

  49. Williams JA, Goldfine ID. The insulin-pancreatic acinar axis.Diabetes 1985; 34: 980–986.

    Article  PubMed  CAS  Google Scholar 

  50. Henderson JR, Daniel PM, Fraser PA. The pancreas as a single organ: the influence of the endocrine upon the exocrine part of the gland.Gut 1981; 22: 158–167.

    Article  PubMed  CAS  Google Scholar 

  51. Kanno T, Ueda N, Saito A. Insulo-acinar axis: possible role of insulin potentiating the effects of pancreozymin in the pancreatic acinar cell, inEndocrine Gut and Pancreas, Pujita T, ed., Elsevier Scientific Publishing Company, Amsterdam, 1976, pp. 335–345.

    Google Scholar 

  52. Lee KY, Zhou L, Ren XS, Chang T-M, Chey WY. An important role of endogenous insulin on exocrine pancreatic secretion in rats.Am J Physiol 1990; 258: G268-G274.

    PubMed  CAS  Google Scholar 

  53. Duan R-D, Wicker C, Erlanson-Abertsson C. Effect of insulin administration on contents, secretion and syntheses of pancreatic lipase and colipase.Pancreas 1991, 6: 595–602.

    Article  PubMed  CAS  Google Scholar 

  54. Pierzynowski SG, Barej W. The dependence of exocrine pancreatic secretion on insulin in sheep.Q J Exp Physiol 1984; 69: 35–39.

    PubMed  CAS  Google Scholar 

  55. Pierzynowski SG, Podgurniak P, Mikolajczyk M, Szczesny W. Insulin and the parasympathetic dependence of pancreatic juic secretion in healthy and alloxan diabetic sheep.Q J Exp Physiol 1986: 71: 401–407.

    PubMed  CAS  Google Scholar 

  56. Alvarez C, Lopez MA. Effect of alloxan diabetes on exocrine pancreatic secretion in the anesthetized rabbits.Int J Pancreatol 1989; 5: 229–238.

    PubMed  CAS  Google Scholar 

  57. Chey W-Y, Shay H, Shuman C. External pancreatic secretion in diabetes mellitus.Ann Intern Med 1963; 59: 812–821.

    PubMed  CAS  Google Scholar 

  58. Vacca JB, Henke WJ, Knight WA. The exocrine pancreas in diabetes mellitus.Ann Intern Med 1964; 61: 242–247

    PubMed  CAS  Google Scholar 

  59. Tatemoto K, Efendic S, Mutt W, Makk G, Feistner GJ, Barchas JD. Pancreastatin, novel pancreatic peptide that inhibits insulin secretion.Nature 1986; 324: 476–478.

    Article  PubMed  CAS  Google Scholar 

  60. Bretherton-Watt D, Ghatei MA, Bishop AE, Facer P, Fahey M, Hedges M, Williams G, Valentino KL, Tatemoto K, Roth K, Polak K, Bloom SR. Pancreastatin distribution and plasma levels in the pig.Peptides 1988; 9: 1005–1014.

    Article  PubMed  CAS  Google Scholar 

  61. Östenson C-G, Efendie S, Holst JJ. Pancreastatin-like immunoreactivity and insulin are released in parallel from the perfused porcine pancreas.Endocrinology 1989; 124: 2986–2990.

    PubMed  Google Scholar 

  62. Miyasaka K, Funakoshi A, Yasunami Y, Nakamura R, Kitani K, Tamamura H, Funakoshi S, Fujii N. Rat pancreastatin inhibits both pancreatic exocrine and endocrine secretion in rats.Reg Pept 1990; 28: 189–198.

    Article  CAS  Google Scholar 

  63. Holst JJ, Östenson C-G, Harling H, Messell T. Porcine pancreastatin has no effect endocrine secretion from the pig pancreas.Diabetologia 1990; 33: 403–406.

    Article  PubMed  CAS  Google Scholar 

  64. Borgström B, Wieloch T, Erlanson-Albertsson C. Evidence for a pancreatic procolipase and its activation by trypsin.FEBS Letters 1979; 108: 407–410.

    Article  PubMed  Google Scholar 

  65. Erlanson-Albertsson C, Larsson A. A possible physiological function of pancreatic procolipase activation peptide in appetite regulation.Biochimie 1988; 70: 1245–1250.

    Article  PubMed  CAS  Google Scholar 

  66. Erlanson-Albertsson C. Enterostatin: The pancreatic procolipase activation peptide-a-signal for regulation of fat intake.Nutr Rev 1992; 50: 307–310.

    Article  PubMed  CAS  Google Scholar 

  67. Ihse I, Lilja P. Effects of intestinal amylase and trypsin on pancreatic secretion in the pig.Scand J Gastroenterol 1979; 14: 1009–1013.

    Article  PubMed  CAS  Google Scholar 

  68. Liener LE, Goodale RL, Demshmulkh A, Satterberg TL, Ward G, DiPietro CM, Bankey PE, Borner JW. Effect of a trypsin inhibitor from soybeans (Bowman-Birk) on the secretory activity of the human pancreas.Gastroenterology 1989; 95: 419–427.

    Google Scholar 

  69. Fushiki T, Iwai K. Two hypotheses on the feedback regulation of pancreatic enzyme secretion.Fed Amer Soc Exp Biol 1989; 3: 121–126.

    CAS  Google Scholar 

  70. Iwai K, Fushiki T, Fukuoka S. Pancreatic enzyme secretion mediated by novel peptide:monitor peptide hypothesis.Pancreas 1988; 3: 720–728.

    Article  PubMed  CAS  Google Scholar 

  71. Miyasaka K, Guan D, Liddle RA, Green GM. Feedback regulation by trypsin: evidence for intraluminal CCK-releasing peptide.Amer J Physiol 1989; 257: G175-G181.

    PubMed  CAS  Google Scholar 

  72. Magee DF. Is there a duodenal-pancreas negative feed-back.Int J Pancreatol 1991; 8: 367–377.

    PubMed  CAS  Google Scholar 

  73. Githens S. Differentiation and development of the exocrine pancreas in animals, inThe Exocrine Pancreas: Biology, Pathobiology, and Diseases, Go VLW, Gardner JD, Brooks FP, et al., eds., Raven, New York 1986; pp. 21–32.

    Google Scholar 

  74. Weström BR, Ohlsson B, Karlsson BW. Development of porcine pancreatic hydrolases and their isoenzymes from the fetal period to adulthood.Pancreas 1987b; 2: 589–596.

    Article  PubMed  Google Scholar 

  75. Larose L, Morisset J. Acinar cell responsiveness to urecholine in rat pancreas during fetal and early postnatal growth.Gastroenterology 1977; 73: 530–533.

    PubMed  CAS  Google Scholar 

  76. Cranwell PD, Moughan PJ. Biological limitations imposed by the digestive system to the growth performance of weaned pigs, inManipulating Pig Production II. Proceedings of the Bienninal Conference of the Australasian Pig Science Association, Barnett JL, Hennesy DP, eds., 1989; 138–183.

  77. Smith MW, Peacock MA. Anomalous replacement of fetal enterocytes in the neonatal pig.Proc Roy Soc Lond 1980; 206: 411–420.

    CAS  Google Scholar 

  78. Ekström GM, Weström BR. Cathepsin B an D activities in intestinal mucosa during postnatal development in pigs. Relation to intestinal uptake and transmission of macromolecules.Biol Neonate 1991; 59: 314–321.

    PubMed  Google Scholar 

  79. Vasilevskaya LS, Stan Y, Chernikov MP, Shlygin GK. Inhibitory action of glycomacropeptide produced on the gastric secretion by various humoral stimulants.Vopr Pitan 1977; 4: 21–24.

    Google Scholar 

  80. Schusdziarra V, Schick R, de la Fuente A, Brantl HV, Pfeiffer EF. Effect of β-casomorphines on somatostatin release in dogs.Endocrinology 1983; 112: 1948–1951.

    Article  PubMed  CAS  Google Scholar 

  81. Koldovsky O, Thornburg V. Hormones in milk.J Ped Gastronterol Nutr 1987; 6: 172–196.

    CAS  Google Scholar 

  82. Weström BR, Ekman R, Svendsen L, Svendsen J, Karlsson BW. Levels of immunoreactive insulin, neurotensin, and bombesin in porcine colostrum and milk.J Ped Gastroenterol Nutr 1987; 6: 440–465.

    Google Scholar 

  83. Thorell JI, Persson B. Transient stimulation of insulin release by fructose in newborn pigs.Endocrinology 1970; 86: 897,898.

    Google Scholar 

  84. Close WH, Le Dividich J, Dué PH. Influence of environmental temperature on glucose tolerance and insulin response in the newborn piglet.Biol Neonate 1985; 47: 84–91.

    PubMed  CAS  Google Scholar 

  85. Kuhl C, Hornnes PJ, Lindkaer-Jensen S, Lauritsen KB. Effect of intraduodenal and intravenous triglyceride infusions on plasma gastric inhibitory polypeptide and insulin in fetal and neonatal pigs.Diabetologia 1982; 23: 41–44.

    Article  PubMed  CAS  Google Scholar 

  86. Flecknell PA, Wootton R, John M. Total body-glucose turnover in normal and intrauterine growth-retarded neonatal piglets.Clin Sci 1981; 60: 335–338.

    PubMed  CAS  Google Scholar 

  87. Alumets J, Håkanson R, Sundler F. Ontogeny of endocrine cells in porcine gut and pancreas. An immunocytochemical study.Gastroenterology 1983; 85: 1359–1372.

    PubMed  CAS  Google Scholar 

  88. Owsley WF, Orr DE, Tribble LF. Effects of age and diet on the development of the pancreas and the synthesis and secretion of pancreatic enzymes in the young pig.J Anim Sci 1986; 63: 497–504.

    PubMed  CAS  Google Scholar 

  89. Lindemann MD, Cornelius SG, El Kandelgy SM, Moser RL, Pettigrew JE. Effect of age, weaning and diet on digestive enzyme levels in the piglet.J Anim Sci 1986; 62: 1298–1307.

    PubMed  CAS  Google Scholar 

  90. Wicker C, Puigserver A, Scheele G. Dietary regulation of levels of active mRNA coding for amylase and serine protease zymogens in the rat pancreas.Eur J Biochem 1984; 139: 381–387.

    Article  PubMed  CAS  Google Scholar 

  91. Rosewicz S, Lewis LD, Wang X-Y, Liddle RA, Logsdon CD. Pancreatic digestive enzyme gene expression: effects of CCK and soybean trypsin inhibitor.Amer J Physiol 1989; 256: G733-G738.

    PubMed  CAS  Google Scholar 

  92. Wicker C, Puigserver A. Changes in mRNA levels of rat pancreatic lipase in the early days of consumption of high-lipid diet.Eur J Biochem 1989; 180: 563–567.

    Article  PubMed  CAS  Google Scholar 

  93. Henning SJ. Functional development of the gastrointestinal tract, inPhysiology of the Gastrointestinal Tract, Johnson LR, ed., Raven, New York 1987; pp. 285–300.

    Google Scholar 

  94. Leung YK, Jirapinyo P, Lebenthal E, Lee PC. Effect of hydrocortisone on the maturation of cholecystokinin (CCK) binding and CCK stimulated amylase release in pancreatic acini of neonatal rats.Pancreas 1987; 1: 73–78.

    Article  Google Scholar 

  95. Puccio F, Chariot J, Lehy T. Influence of hydrocortisone on the development of pancreas in suckling rats.Biol Neonate 1988; 54: 35–44.

    PubMed  CAS  Google Scholar 

  96. Chapple RP, Cuaron JA, Easter RA. Temporal changes in carbohydrate digestive capacity and growth rate of piglets in response to glucocorticoid administration and weaning age.J Anim Sci 1989; 67: 2985–2995.

    PubMed  CAS  Google Scholar 

  97. Korc M, Owerbach D, Quinto C, Rutter WJ. Pancreatic islet-acinar cell inter-action: amylase messenger RNA levels are determined by insulin.Science 1981; 213: 351–353.

    Article  PubMed  CAS  Google Scholar 

  98. Trimble ER, Bruzzone R, Belin D. Insulin resistance is accompanied by impairment of amylase-gene expression in the exocrine pancreas of the obese Zucker rat.Biochem J 1986; 237: 807–812.

    PubMed  CAS  Google Scholar 

  99. Rubinstein E, Mark Z, Haspel J, Ben Ari G, Dreznik Z, Mirelman D, Tadmor A. Antibacterial activity of the pancreatic fluid.Gastroenterology 1985; 88: 927–932.

    PubMed  CAS  Google Scholar 

  100. Pierzynowski SG, Sharma P, Sobczyk J, Garwacki S, Barej W, Weström B. A comparative study of antibacterial activity of pancreatic juice in six mammalian species.Pancreas 1993b; 8: 546–550.

    Article  PubMed  CAS  Google Scholar 

  101. Pierzynowski SG, Sharma P, Sobczyk J, Garwacki S, Barej W. Influence of feeding regimen and postnatal developmental stages on antibacterial activity of the pancreatic juice.Int J Pancreatology 1992; 12: 121–125.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pierzynowski, S.G., Weström, B.R., Svendsen, J. et al. Development and regulation of porcine pancreatic function. Int J Pancreatol 18, 81–94 (1995). https://doi.org/10.1007/BF02785881

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02785881

Key Words

Navigation