Skip to main content
Log in

Effect of cadmium on enzymatic digestion and sugar transport in the small intestine of rabbit

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Cadmium compounds are found widely in our environment: for example, in food, water, soil, and ambient air. The most important exposure route of animals to cadmium in the general environment is via oral exposure. In oral cadmium intoxication, the immediate target organ is the gastrointestinal tract. The aim of the present work was to determine how cadmium acts on the intestinal absorption of sugars and on the sucrase activity through rabbit jejunum, after in vitro administration and/or oral administration of CdCl2 in drinking water. Results obtained show that cadmium decreasesD-galactose accumulation in the jejunum tissue. This effect seems to be the result of an action mainly located on Na+-dependent sugar transport of the mucosal border of the intestinal epithelium, because cadmium seemnnot to modify the sugar diffusion across the intestinal epithelium. Cadmium has also been shown to inhibit the (Na+-K+)-ATPase activity of the enterocyte, which might explain the inhibition of theD-galactose Na+-dependent transport. Nevertheless, a direct action of the cadmium molecule on the Na+-dependent carrier cannot be discarded. Cadmium altered the sucrose activity when it was administered in the drinking water for 4 d.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. F. Andersen, J. B. Nielsen, and P. Svendsen,Toxicology 48, 225–236 (1988).

    Article  PubMed  CAS  Google Scholar 

  2. O. Andersen, J. B. Nielsen, and P. Svendsen,Toxicology 52, 65–79 (1988).

    Article  PubMed  CAS  Google Scholar 

  3. C. E. Bevan and E. C. Foulkes,Toxicology 54, 297–309 (1989).

    Article  PubMed  CAS  Google Scholar 

  4. L. Friberg, M. Piscator, G. F. Nordberg, and T. Kjellström,Cadmium in the Environment, 2nd ed., C.R.C. Press, Cleveland, OH (1974).

    Google Scholar 

  5. S. Jamall, M. Naik, J. J. Sprowls, and L. D. Trombetta,Toxicol. Appl. Pharmacol. 9(5), 339–345 (1989).

    CAS  Google Scholar 

  6. G. O'Brien and L. J. King,Toxicology 56, 87–94 (1989).

    Article  PubMed  Google Scholar 

  7. C.-G. Elinder, inCadmium and Health. A Toxicological and Epidemiological Appraisal, vol. 1, L. Friberg, C.-G. Elinder, T. Kjellström, and G. F. Nordberg, eds., CRC, Boca Raton, FL, 1985, pp. 47–51.

    Google Scholar 

  8. W. Tsuchiya and Y. Okada,Experientia 38(9), 1073 (1982).

    Article  PubMed  CAS  Google Scholar 

  9. K. V. Sastry and K. M. Subhadra,Water Air Soil Pollut. 20, 293–297 (1983).

    Article  CAS  Google Scholar 

  10. D. S. Miller, A. T. Shehata, and J. Lerner,J. Pharmacol. Exp. Therap. 214(1), 101–105 (1980).

    CAS  Google Scholar 

  11. D. S. Miller,J. Pharmacol. Exp. Therap. 216(1) 70–76 (1981).

    CAS  Google Scholar 

  12. A. Klip, S. Grinstein, J. Biber, and G. Semenza,Biochim. Biophys. Acta 598 (1), 100–114 (1980).

    Article  PubMed  CAS  Google Scholar 

  13. S. Kojima, M. Kiyozumi, T. Honda, T. Shimizu, Y. Moriyama, and E. SueyoshiChem. Pharm. Bull. 34(1), 372–377 (1986).

    PubMed  CAS  Google Scholar 

  14. V. Lyall, R. Nath, and A. Mahmood,Biochem. Med. 22, 192–197 (1979).

    Article  PubMed  CAS  Google Scholar 

  15. M. J. Rodríguez-Yoldi, A. Lugea, A. Barber, M. LLuch, and F. Ponz,Rev. Esp. Fisiol. 45 (suppl), 207–214 (1989).

    PubMed  Google Scholar 

  16. D. W. Watkins, C. Chenu, and P. Ripoche,Pflügers Arch. Eur. J. Physiol. 415, 165–171 (1989).

    Article  CAS  Google Scholar 

  17. M.-C. Rodríguez-Yoldi, J. E. Mesonero, and M.-J. Rodríguez-Yoldi,Pflügers Arch. Eur. J. Physiol. 418(6), R-171 (1991).

    Google Scholar 

  18. E. Brot-Laroche, M. A. Serrano, B. Delhomme, and F. Alvarado,J. Biol. Chem. 261 (14), 6168–6176 (1986).

    PubMed  CAS  Google Scholar 

  19. A. Dahlqvist,Anal. Biochem. 7, 18–25 (1964).

    Article  PubMed  CAS  Google Scholar 

  20. J. R. Del Castillo and J. W. L. Robinson,Biochim. Biophys. Acta 688, 45–56 (1982).

    Article  PubMed  Google Scholar 

  21. F. Proverbio and J. R. Del Castillo,Biochim. Biophys. Acta 646, 99–108 (1981).

    Article  PubMed  CAS  Google Scholar 

  22. M. Bradford,Anal. Biochem. 72, 248–254 (1976).

    Article  PubMed  CAS  Google Scholar 

  23. R. G. D. Steel and J. H. Torrie,Principles and Procedures of Statistics. A Biometrial Approach. McGraw-Hill Book Company, Inc., New York (1980).

    Google Scholar 

  24. F. Alvarado and R. K. Crane,Biochem. Biophys Acta 56, 170–172 (1962).

    Article  PubMed  CAS  Google Scholar 

  25. J. R. Del Castillo and G. Whittembury,Biochim. Biophys. Acta 910, 209–216 (1987).

    Google Scholar 

  26. C. Bevan, E. Kinne-Saffran, E. C. Foulkes, and R. K. H. Kinne,Toxicol. Appl. Pharmacol. 101, 461–469 (1989).

    Article  PubMed  CAS  Google Scholar 

  27. K. R. Kim, H. Y. Lee, C. K. Kim, and Y. S. Park,Toxicol. Appl. Pharmacol. 106, 102–111 (1990).

    Article  PubMed  CAS  Google Scholar 

  28. E. Brot-Laroche and F. Alvarado, inIntestinal Transport, M. Gilles-Baillien and R. Gilles, eds., Springer-Verlag, Berlin, Heidelberg, 1983, pp. 147–169.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mesonero, J.E., Yoldi, MC.R. & Yoldi, MJ.R. Effect of cadmium on enzymatic digestion and sugar transport in the small intestine of rabbit. Biol Trace Elem Res 38, 217–226 (1993). https://doi.org/10.1007/BF02785306

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02785306

Index Entries

Navigation