Skip to main content
Log in

Selenium-dependent glutathione peroxidase modules encoded by RNA viruses

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Glutathione peroxidase (GPx) is the prototypical eukaryotic selenoprotein, with the rare amino acid selenocysteine (Sec) at the enzyme active site, encoded by the UGA codon in RNA. A DNA virus,Molluscum contagiosum, has now been shown to encode a functional selenium-dependent GPx enzyme. Using modifications of conventional sequence database searching techniques to locate potential viral GPx modules, combined with structurally guided comparative sequence analysis, we provide compelling evidence that Se-dependent GPx modules are encoded in a number of RNA viruses, including potentially serious human pathogens like HIV-1 and hepatitis C virus, coxsackievirus B3, HIV-2, and measles virus. Analysis of the sequences of multiple viral isolates reveals conservation of the putative GPx-related features, at least within viral subtypes or genotypes, supporting the hypothesis that these are functional GPx modules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. A. Sunde, Selenium, inHandbook of Nutritionally Essential Minerals, B. L. O’Dell and R. A. Sunde, eds., Marcel Dekker, New York, pp. 493–556 (1997).

    Google Scholar 

  2. R. J. Turner and J. M. Finch, Selenium and the immune response,Proc. Nutr. Soc. 50, 275–285 (1991).

    Article  PubMed  CAS  Google Scholar 

  3. E. W. Taylor, Selenium and viral diseases: facts and hypotheses,J. Orthomol. Med. 12, 227–239 (1997).

    Google Scholar 

  4. T. M. Buttke and P. A. Sandstrom, Redox regulation of programmed cell death in lymphocytes,Free Radical Res. 22, 389–397 (1994).

    Google Scholar 

  5. M. Roy, L. Kiremidjian-Schumacher, H. I. Wishe, M. W. Cohen, and G. Stotzky, Supplementation with selenium and human immune cell functions. I. Effect on lymphocyte proliferation and interleukin 2 receptor expression.Biol. Trace Element Res. 41, 103–114 (1994).

    CAS  Google Scholar 

  6. E. W. Taylor, R. G. Nadimpalli, and C. S. Ramanathan, Genomic structures of viral agents in relation to the biosynthesis of selenoproteins,Biol. Trace Element Res. 56, 63–91 (1997).

    Article  CAS  Google Scholar 

  7. M. J. Berry, G. W. Martin III, and S. C. Low, RNA and protein requirements for eukaryotic selenoprotein synthesis,Biomed. Environ. Sci. 10, 182–189 (1997).

    PubMed  CAS  Google Scholar 

  8. M. J. Berry and P. R. Larsen, Recognition of UGA as a selenocysteine codon in eukaryotes: a review of recent progress,Biochem. Soc. Trans. 21, 827–832 (1993).

    PubMed  CAS  Google Scholar 

  9. A. Bock, K. Forchhammer, J. Heider, W. Leinfelder, G. Sawers, B. Veprek, et al., Selenocysteine: the 21st amino acid,Mol. Microbiol. 5, 515–520 (1991).

    Article  PubMed  CAS  Google Scholar 

  10. E. W. Taylor, C. S. Ramanathan, R. K. Jalluri, and R. G. Nadimpalli, A basis for new approaches to the chemotherapy of AIDS: novel genes in HIV-1 potentially encode selenoproteins expressed by ribosomal frameshifting and termination suppression,J. Med. Chem. 37, 2637–2654 (1994).

    Article  PubMed  CAS  Google Scholar 

  11. E. W. Taylor, C. S. Ramanathan, and R. G. Nadimpalli, A general method for predicting new genes in nucleic acid sequences: application to the human immunodeficiency virus, inComputational Medicine, Public Health and Biotechnology, Ser. Math. Biolo. Med.5, 285–309, M. Witten, ed., World Scientific, Singapore, (1996).

    Google Scholar 

  12. C. S. Ramanathan and E. W. Taylor, Computational genomic analysis of hemorrhagic fever viruses: viral selenoproteins as a potential factor in pathogenesis,Biol. Trace Element Res. 56, 93–106 (1997).

    Article  CAS  Google Scholar 

  13. J. Bai, S. Wu, K. Ge, X. Deng, and C. Su, The combined effect of selenium deficiency and viral infection on the myocardium of mice,Acta Acad. Med. Sin. 2, 29–31 (1980).

    CAS  Google Scholar 

  14. M. A. Beck, P. C. Kolbeck, L. H. Rohr, Q. Shi, V. C. Morris, and O. A. Levander, Benign human enterovirus becomes virulent in selenium-deficient mice,J. Med. Virol. 43, 166–170 (1994).

    Article  PubMed  CAS  Google Scholar 

  15. M. A. Beck, Q. Shi, V. C. Morris, and O. A. Levander, Rapid genomic evoluton of a non-virulent Coxsackievirus B3 in selenium-deficient mice results in selection of identical virulent isolates,Nature Med. 1, 433–436 (1995).

    Article  PubMed  CAS  Google Scholar 

  16. T. G. Senkevich, J. J. Bugert, J. R. Sisler, E. V. Koonin, G. Darai, and B. Moss, Genome sequence of a human tumorigenic poxvirus: prediction of specific host responseevasion genes,Science 273, 813–816 (1996).

    Article  PubMed  CAS  Google Scholar 

  17. J. L. Shisler, T. G. Senkevich, M. J. Berry, and B. Moss, Ultraviolet-induced cell death blocked by a selenoprotein from a human dermatotropic poxvirus,Science 279, 102–105 (1998).

    Article  PubMed  CAS  Google Scholar 

  18. E. W. Taylor, A. Bhat, R. G. Nadimpalli, W. Zhang, and J. D. Kececioglu, HIV-1 encodes a sequence overlapping env gp41 with highly significant similarity to selenium-dependent glutathione peroxidases,J. AIDS Hum. Retrovirol. 15, 393–394 (1997).

    CAS  Google Scholar 

  19. O. Epp, R. Ladenstein, and A. Wendel, The refined structure of the selenoenzyme glutathione peroxidase at 0.2 nm resolution,Eur. J. Biochem. 133, 51–69 (1983).

    Article  PubMed  CAS  Google Scholar 

  20. K. D. Aumann, N. Bedorf, R. Brigelius-Flohe, D. Schomburg, and L. Flohe, Glutathione peroxidase revisited-simulation of the catalytic cycle by computer-assisted molecular modelling,Biomed. Environ. Sci. 10, 136–155 (1997).

    PubMed  CAS  Google Scholar 

  21. W. Zhang, J. D. Kececioglu, and E. W. Taylor, Assessing distant homology between an aligned protein family and a proposed member through accurate sequence alignment,J. Mol. Evol., submitted.

  22. L. Zhao, J. A. Ruzicka, A. G. Cox, and E. W. Taylor, HIV-1 encodes a sequence with functional glutathione peroxidase activity: implications for the link between selenium deficiency and AIDS, presented at the4th Dresden Selenium Symposium, Dresden, Germany, May 15–16, 1999.

  23. V. N. Gladyshev, T. C. Stadtman, D. L. Hatfield, and K.-T. Jeang, Levels of major selenoproteins in T cells decrease during HIV infection and low molecular mass selenium compounds increase,Proc. Natl. Acad. Sci. USA 96, 835–839 (1999).

    Article  PubMed  CAS  Google Scholar 

  24. E. W. Taylor, Defense of the HIV selenoprotein theory: a critique of Gladyshev et al. (1999) Posted at http://bioinfo.chem.uga.edu/homepage/wtaylor.

  25. S. Vidal, J. Curran, and D. Kolakofsky, A stuttering model for paramyxovirus P mRNA editing,EMBO J. 9, 2017–2022 (1990).

    PubMed  CAS  Google Scholar 

  26. S. M. H. Horikamin and S. A. Moyer, Synthesis of leader RNA and editing of the P mRNA during transcription by purified measles virus,J. Virol. 65, 5342–5347 (1991).

    Google Scholar 

  27. M. Steward, I. B. Vipond, N. S. Millar, and P. T. Emmerson, RNA editing in Newcastle disease virus,J. Gen. Virol. 74, 2539–2547 (1993).

    PubMed  CAS  Google Scholar 

  28. M. Bjornstedt, S. Kumar, L. Bjorkhem, G. Spyrou, and A. Holmgren, Selenium and the thioredoxin and glutaredoxin systems,Biomed. Environ. Sci. 10, 271–279 (1997).

    PubMed  CAS  Google Scholar 

  29. C. Sappey, S. Legrand-Poels, M. Best-Belpomme, A. Favier, B. Rentier, and J. Piette, Stimulation of glutathione peroxidase activity decreases HIV Type 1 activation after oxidative stress,AIDS Res. Hum. Retrovir. 10, 1451–1461 (1994).

    PubMed  CAS  Google Scholar 

  30. K. Hori, D. Hatfield, F. Maldarelli, B. J. Lee, and K. A. Clouse, Selenium supplementation suppresses tumor necrosis factor α-induced human immunodeficiency virus type 1 replication in vitro,AIDS Res. Hum. Retrovir. 13, 1325–1332 (1997).

    Article  PubMed  CAS  Google Scholar 

  31. P. A. Sandstrom, J. Murray, T. M. Folks, and A. M. Diamond, Antioxidant defenses influence HIV-1 replication and associated cytopathic effects,Free Radical Biol. Med. 24, 1485–1491 (1998).

    Article  CAS  Google Scholar 

  32. E. W. Taylor, A. G. Cox, L. Zhao, J. A. Ruzicka, A. Bhat, W. Zhang, et al., Nutrition, HIV and drug abuse: the molecular basis of a unique role for selenium,J. AIDS Human Retrovir., in press.

  33. J. Constans, J. L. Pellegrin, C. Sergeant, M. Simonoff, I. Pellegrin, H. Fleury, et al., Serum selenium predicts outcome in HIV infection,J. AIDS 10, 392 (1995).

    CAS  Google Scholar 

  34. M. P. Look, J. K. Rockstroh, G. S. Rao, K. A. Kreuzer, S. Barton, H. Lemoch, et al., Serum selenium, plasma glutathione (GSH) and erythrocyte glutathione peroxidase (GSH-Px)-levels in asymptomatic versus symptomatic human immunodeficiency virus-1 (HlV-l)-infection,Eur. J. Clin. Nutr. 51, 266–272 (1997).

    Article  PubMed  CAS  Google Scholar 

  35. M. K. Baum, G. Shor-Posner, S. Lai, G. Zhang, H. Lai, M. A. Fletcher, et al., High risk of mortality in HIV infection is associated with selenium deficiency,J. AIDS Hum. Retrovir. 15, 370–374 (1997).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, W., Ramanathan, C.S., Nadimpalli, R.G. et al. Selenium-dependent glutathione peroxidase modules encoded by RNA viruses. Biol Trace Elem Res 70, 97–116 (1999). https://doi.org/10.1007/BF02783852

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02783852

Index Entries

Navigation