Skip to main content
Log in

The effect of a carbon-carbon double bond on electron beam-generated plasma decomposition of trichloroethylene and 1,1,1-trichloroethane

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The effect of a carbon-carbon double bond on the energy required for decomposition in an electron beam-generated plasma reactor is studied by comparing the decomposition of trichloroethylene and 1,1,1-trichloroethane. A reaction mechanism for TCE decomposition based on a chlorine radical chain reaction is presented which accounts for the formation of all of the experimentally observed reaction products. TCE decomposition is autocatalyzed by reaction products, whereas TCA decomposition is inhibited. The rate expression for the decomposition of TCE in the reactor is determined to be r=−[T](15.07[T0]−0.40+0.006{[T0]−[T]}), where [T] and [T0] are both in ppm, and r is in ppm Mrad−1. The energy expense ɛ for TCE decomposition is determined as a function of inlet concentration. For 99% decomposition of 100 ppm TCE in air, ɛ=28 eV/molecule, and ɛ=2.5 eV/molecule at 3000 ppm. This is only 2.5–5% of the amount of energy required to decompose a similar amount of TCA as reported by the authors in a previous study. By comparing the energy requirements for TCE decomposition to those for TCA decomposition, the TCE reaction chain length is determined to increase from approximately 20 at 100 ppm initial TCE concentration, to 40 at 3000 ppm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. National Research Council, Alternatives for Groundwater Cleanup, National Academy Press, Washington DC (1994).

  2. S. A. Vitale, K. Hadidi, D. R. Cohn, P. Falkos and L. Bromberg,Plasma Chem. Plasma Process. 16, 651 (1996).

    Article  Google Scholar 

  3. M. C. Hsiao, B. T. Merritt, B. M. Penetrante, G. E. Vogtlin, and P. H. Wallman,J. Appl. Phys. 78, 3451 (1995).

    Article  ADS  Google Scholar 

  4. L. A. Rosocha and J. J. Coogan, “Processing of pollutants in dielectric-barrier plasma reactors,”Proceedings of the 12th International Symposium on Plasma Chemistry, Minneapolis, Minnesota (1995), pp. 665–676.

  5. B. M. Penetrante, M. C. Hsiao, J. N. Bardsley, B. T. Merritt, G. E. Vogtlin, P. H. Wallman, A. Kuthi, C. P. Burkhart, and J. R. Bayless,Pure Appl. Chem. 68, 1083 (1996).

    Article  Google Scholar 

  6. J.W. Bozzelli and R. B. Barat,Plasma Chem. Plasma Process. 8, 293–314 (1988).

    Article  Google Scholar 

  7. T. R. Krause and J. E. Helt, “Chemical detoxification of trichloroethylene and 1,1,1-trichloroethane in a microwave discharge plasma reactor at atmospheric pressure,” Chapter 19 inEmerging Technologies in Hazardous Waste Management III, W. D. Tedder and F. G. Pohland, eds., ACS, Washington, DC (1993).

    Google Scholar 

  8. M. Koch, D. R. Cohn, R. M. Patrick, M. P. Scheutze, L. Bromberg, D. Reilly, K. Hadidi, P. Thomas and P. Falkos,Environ. Sci. Technol. 29, 2946 (1995).

    Article  Google Scholar 

  9. R. C. Slater and D. H. Douglas-Hamilton,J. Appl. Phys. 52, 5820–5828 (1991).

    Article  ADS  Google Scholar 

  10. M. Koch, D. R. Cohn, R. M. Patrick, M. P. Scheutze, L. Bromberg, D. Reilly and P. Thomas,Phys. Lett. A 184, 109 (1993).

    Article  ADS  Google Scholar 

  11. E. Sanhueza, I. C. Hisatsune, and J. Heicklen,Chem. Rev. 76, 801 (1976).

    Article  Google Scholar 

  12. P. G. Blystone, M. D. Johnson, R. H. Werner and P. F. Daley, “Advanced ultraviolet flash lamps for the destruction of organic contaminants in air,” Chapter 18 inEmerging Technologies in Hazardous Waste Management III, W. D. Tedder and F. G. Pohland, eds., ACS, Washington, DC (1993).

    Google Scholar 

  13. M. Koch, “Decomposition of chlorinated organic compounds in gaseous hazardous waste using a tunable plasma reactor,” Ph.D. Thesis, MIT, Department of Nuclear Engineering, 1994.

  14. See V. N. Kondrat’ev,Kinetics of Chemical Gas Reactions, Academy of Sciences, USSR, Moscow (1958), pp. 40–54, 616–701.

    Google Scholar 

  15. D. P. Konovalov,Zh. Eksp. Teor. Fiz. (J. Exp. Theor. Phys.) 1, 62 (1887).

    Google Scholar 

  16. W. Ostwald,Lehrbuch der Allgemrinen Chimie, Bd. II, Liepzig (1887), p. 635; or see V. N. Kondrat’ev,Kinetics of Chemical Gas Reactions, Academy of Sciences, USSR, Moscow (1958), p. 50.

  17. V. N. Kondrat’ev,Kinetics of Chemical Gas Reactions, Academy of Sciences, USSR, Moscow (1958), p. 51.

    Google Scholar 

  18. P. B. Ayscough, A. J. Cochen, F. S. Dainton, S. Hirst and M. Weston,Proc. Chem. Soc. 244 (1961).

  19. E. Tschuikow, J. Niedzielski and F. Faraji,Can. J. Chem. 63, 1093 (1985).

    Article  Google Scholar 

  20. J. S. Chang and F. KaufmanJ. Chem. Phys. 66, 4989–4994 (1977).

    Article  ADS  Google Scholar 

  21. C. J. Howard,J. Chem. Phys. 65, 4771–4777 (1976).

    Article  ADS  Google Scholar 

  22. M. J. Thomson, D. Lucas, C. P. Koshland, R. F. Sawyer, Y. Wu, and J. W. Bozzelli,Combust. Flame 98, 155–169 (1994).

    Article  Google Scholar 

  23. E. Schultes, A. A. Christodoulides, and R. N. Schindler,J. Chem. Phys. 8, 354–365 (1975).

    Article  Google Scholar 

  24. B. Lerner, J. Biringham, R. Tonkyn, S. Barlow and T. Orlando, “Decomposition of trichloroethylene by a large-scale, high-flow packed-bed gas phase corona reactor,”Proceedings of the 12th International Symposium on Plasma Chemistry, Vol. 2, Minneapolis, Minnesota (1995), pp. 697–702.

  25. M. Koch,Radiat. Phys. Chem. 46, 359 (1995).

    Article  ADS  Google Scholar 

  26. K. Kimura, S. Satsumata, Y. Achiba, T. Yamazaki, and S. Iwata,Handbook of HeI Photoelectron Spectra of Fundamental Organic Molecules, Halsted Press, New York (1981).

    Google Scholar 

  27. L. G. Christophorou,Electron-Molecule Interactions and Their Applications, Vol. 1, Academic Press, New York, (1984) p. 543.

    Google Scholar 

  28. L. G. Christoporou,Atomic and Molecular Radiation Physics, Wiley-Interscience (1972), p. 483.

  29. M. J. Rossi, H. Helm, and D. C. Lorents,Appl. Phys. Lett. 47, 576–578 (1985).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by the Contaminant Plume Containment and Remediation Focus Area, Office of Environmental Management, U.S. Department of Energy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vitale, S.A., Hadidi, K., Cohn, D.R. et al. The effect of a carbon-carbon double bond on electron beam-generated plasma decomposition of trichloroethylene and 1,1,1-trichloroethane. Plasma Chem Plasma Process 17, 59–78 (1997). https://doi.org/10.1007/BF02766822

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02766822

Key Words

Navigation