Skip to main content
Log in

Historical evolution of circuit models for the electrode-electrolyte interface

  • Review Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Electrodes are widely used to measure bioelectric events and to stimulate excitable tissues. In one form or another, electrodes have been around for nearly two centuries; yet our ability to predict their properties is extremely limited, despite considerable research, especially during the last century. This paper chronicles the accumulation of knowledge about the electrode-electrolyte interface as a circuit element. Our understanding of this interface starts with the Helmholtz double layer of charge and progresses through the Warburg and Fricke lowcurrent-density models, which demonstrated that the resistive and capacitive components are polarization elements, the values of which depend on frequency. The discovery by Schwan, showing that the components of the Warburg-Fricke model are current-density dependent, is recounted, along with the discovery of the rectifying properties of the electrode-electrolyte interface and how it was put to practical use. The very high current-density operation of the interface is discussed in terms of gas evolution, arcing, and shock-wave production. Finally the evolution of recording electrodes is traced. Because electrodes can be operated over a very wide range of current density, it is unlikely that a single model can be created for the electrode-electrolyte interface, although over a restricted current-density range such a model may be possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Association for the Advancement of Medical Instrumentation.AAMI-ANSI National Standard for Cardiac Defibrillator Devices. Arlington, VA: AAMI, May 26, 1989.

    Google Scholar 

  2. Association for the Advancement of Medical Instrumentation.AAMI-ANSI Disposable ECG Electrodes EC12. Arlington, VA: AAMI, 1991.

    Google Scholar 

  3. d’Arsonval, A. Electrodes impolarizables homogenes,C. R. Acad. Sci. 38:228–229, 1886.

    Google Scholar 

  4. Baudoin, A., H. Fischgold, and J. Lerique, Une nouvelle electrode liquide.C. R. Soc. Biol. 127:1221–1222, 1938.

    Google Scholar 

  5. Bell, G. H., J. A. C. Knox, and A. J. Small. Electrocardiography electrolytes.Br. Heart J. 1:229–236, 1939.

    Article  PubMed  CAS  Google Scholar 

  6. Bourland, J. D., J. L. Wessale, W. A. Tacker. Bubble formation, arcing and waveform distortions produced in human blood by trapezoidal defibrillation current.Proc. AAMI Twelfth Annu. Meeting 409:160, 1977.

    Google Scholar 

  7. Carr, T. C., A. L. Holt, P. N. Katz. Nonlinear aspects of the bioelectrode-electrolyte interface. In:Biomedical Electrode Technology, edited by H. A. Miller and D. Harrison. New York: Academic Press, 1974, 474 pp.

    Google Scholar 

  8. Das, D. P., and J. D. Webster. Defibrillation recovery curves for different electrode materials.IEEE Trans. Biomed. Eng. BME 27:230–233, 1980.

    Article  CAS  Google Scholar 

  9. DeBoer, R. W., and A. vonOesterom. Electrical properties of platinum electrodes.Med. Biol. Eng. Comput. 16:1–9, 1978.

    Article  CAS  Google Scholar 

  10. Einthoven, W. Ein neues Galvanometer.Ann. Phys. 12 (Suppl. 4):1059–1071, 1903.

    Article  Google Scholar 

  11. Einthoven, W. Die Aklconsstrome des Herzens. In:Handbuch der Normalin und Pathologischen Physiologie, Berlin: Verlag von Julius Springer 1928, pp. 785–862.

    Google Scholar 

  12. Epelboin, I., M. Keddam, and J. C. Lestrade. Faradic impedances and intermediates in electrochemical reactions.Faraday Discuss. Chem. Soc. 56:264–275, 1973.

    Article  CAS  Google Scholar 

  13. Faraday, M. Experimental researches in electricity, 7th series.Phil. Trans. R. Soc. Lond. 124:77–122, 1834.

    Article  Google Scholar 

  14. Fessenden, R. A. US Patent 727,331, May 5, 1903.

  15. Forbes, A., S. Cobb, and McK. Cattell. An electrocardiogram and an electromyogram in an, elephantAm. J. Physiol. 55:385–389, 1921.

    Google Scholar 

  16. Fricke, H. The theory of electrolytic polarization.Phil. Mag. 14:310–318, 1932.

    CAS  Google Scholar 

  17. Geddes, L. A., and H. E. Hoff. The capillary electrometer.Arch. Int. d’Histoire Sci. 56–57:275–290, 1961.

    Google Scholar 

  18. Geddes, L. A., L. E. Baker, and M. McGoodwin. The relationship between electrode area and amplifier input impedance in recording muscle action potentials.Med. Biol. Eng. 5:561–569, 1967.

    Article  Google Scholar 

  19. Geddes, L. A., and L. E. Baker. The relationship between input impedance and electrode area in recording the ECG.Med. Biol. Eng. 4:439–450, 1966.

    Article  PubMed  CAS  Google Scholar 

  20. Geddes, L. A., and L. E. Baker,Principles of Applied Biomedical Instrumentation, 1st Ed. New York: John Wiley and Sons, 1968, 479 pp.

    Google Scholar 

  21. Geddes, L. A., C. P. DaCosta, and G. Wise. The impedance of stainless steel electrodes.Med. Biol. Eng. Comput. 9:511–521, 1971.

    CAS  Google Scholar 

  22. Geddes, L. A., K. S. Foster, J. Reilly, et al. The rectification properties of an electrode-electrolyte interface operated at high current density.IEEE Trans. Biomed. Eng. BME 34: 669–672, 1987.

    Article  CAS  Google Scholar 

  23. Geddes, L. A., and H. E. Hoff. The discovery of bioelectricty—the Galvani-Volta controversy.IEEE Spectrum 8:38–46, 1971.

    Article  Google Scholar 

  24. Geddes, L. A. How measuring electric current has improved through the ages.IEEE Potentials 15:40–45, 1996.

    Article  Google Scholar 

  25. Gesteland, R. C., B. Howland, I. Y. Lettvin, W. H. Pitts Comments on microelectrodes.Proc. Inst. Radio Eng. 47: 1856–1862, 1956.

    Google Scholar 

  26. Helmholtz, H. Studien uber electrische Grenzschichten.Ann. Phys. Chem. 7:337–382, 1879.

    Article  Google Scholar 

  27. Hill, A. V. The rectification of alternating current by unequal or unequally dirty electrodes.J. Physiol. 46:XVII-XVIII, 1913.

    Google Scholar 

  28. Jolley, L. B. W.Alternating Current Rectification and Allied Problems. New York: Wiley, 1928, p. 472.

    Google Scholar 

  29. Jones, G. J., and S. M. Christian. The measurement of the conductance of electrolytes. VI. Galvanic polarization by alternating current.J. Am. Chem. Soc. 57:272–280, 1935.

    Article  CAS  Google Scholar 

  30. Jones, G. J., and D. M. Bollinger. The measurement of the conductance of electrolytes. VII. On platinization.J. Am. Chem. Soc. 57:280–284, 1935.

    Article  CAS  Google Scholar 

  31. Lippmann, G. Sur la measure de 1 resistance electrique des liquides au moyen de l’electrometre capillaire.C. R. Acad. Sci. 83:192–194, 1876.

    Google Scholar 

  32. Lippman, G. Beziehungen zwischen den capilcapillaren ulare und elektrischen.Ann. Phys. Chem. 2S149:546–561, 1873.

    Article  Google Scholar 

  33. Marey, E. J. Des variations electriques des muscles et du coeur en particulier etudiees au moyen de elekectonetre de M. Lippmann.C. R. Acad. Sci. 82:975–977, 1876.

    Google Scholar 

  34. Mayer, S., L. A. Geddes, J. D. Bourland, and L. Ogborn. New method for measuring the Faradic resistance of a single electrode-electrolyte interface.Australas. Phys. Eng. Sci. Med. 15:38–41, 1992.

    PubMed  CAS  Google Scholar 

  35. Murdock, C. C., and E. E. Zimmerman. Polarization impedance at low frequencies.Physics 7:211–219, 1936.

    Article  CAS  Google Scholar 

  36. Ohm, G. S. Bestimmung des Gesetzes und welchem Metalle die contaktelectricitat leiten.Schweiggers J. Chem. Phys. 46:137–166, 1826.

    Google Scholar 

  37. Onaral, B., and H. P. Schwan. Linear and nonlinear properties of platinum electrode polarization.Med. Biol. Eng. Comput. 20:299–300, 1982.

    Article  PubMed  CAS  Google Scholar 

  38. Pollak, C. Improvements in or connected with electrical condensers. British patent 1069, 1896.

  39. Ragheb, T., and L. A. Geddes. Electrical properties of metallic electrodes.Med. Biol. Eng. Comput. 28:182–186, 1990.

    Article  PubMed  CAS  Google Scholar 

  40. Ragheb, T., and L. A. Geddes. The polarization impedance of common electrode metals operating at low current density.Ann. Biomed. Eng. 19:151–163, 1991.

    Article  PubMed  CAS  Google Scholar 

  41. Ragheb, T., S. Riegle, and L. A. Geddes. The impedance of a spherical monopolar electrode.Ann. Biomed. Eng. 20:617–627, 1992.

    Article  PubMed  CAS  Google Scholar 

  42. Randles, E. B. Rapid electrode reactions.Discuss. Faraday Soc. 1:11–19, 1947.

    Google Scholar 

  43. Schoenberg, A. A., E. Booth, and P. D. Lyon. Development of standard test methods for evaluating defibrillation recovery characteristics of disposable ECG electrodes.Med. Instrum. 13:2600–2665, 1979.

    Google Scholar 

  44. Schwan, H. P., and J. G. Maczuk. Electrode polarization impedance: limits of linearity. Proceedings of the 18th ACEMB, paper 5-1, Philadelphia, PA, 1965.

  45. Schwan, H. P. Polarization impedance and measurements in biological materials.Trans. N.Y. Acad. Sci. 148:191–209, 1968.

    Article  CAS  Google Scholar 

  46. Sluyters-Rehbach, M., and J. H. Sluyters. Sine wave methods in the study of electrode processes.Electro-anal. Chem. 4:1–121, 1970.

    CAS  Google Scholar 

  47. Varley, C. E. F. Polarization of metallic surfaces in aqueous solutions. On a new method of obtaining electricity from mechanical force, and certain relations between electrostatic induction and the decomposition of water.Phil. Trans. R Soc. Lond. 161:129–136, 1871.

    Article  Google Scholar 

  48. Volta, A. On the electricity excited by the mere contact of conducting substances of different kinds. In a letter from Mr. Alexander Volta, F.R.S., professor of natural philosophy in the University of Pavia, to the Rt. Hon. Sir Joseph Banks, Bart, K.B.P.R.S.Phil. Trans. R. Soc. Lond. 90:744–746, 1800.

    Google Scholar 

  49. Warburg, E. Ueber das Verhalten sogenanter unpolarsbarer Elektroden gegen Wechselstrons.Ann. Phys. Chim. 67:493–499, 1899.

    Article  Google Scholar 

  50. Warburg, E. Ueber die Polarisations capacitat des Platins.Ann. Phys. 6:125–135, 1901.

    Article  CAS  Google Scholar 

  51. Wessale, J. L., J. D. Bourland, L. A. Geddes, and G. M. Ayers. Arcing threshold and electrode surface area for catheter electrical ablation.PACE 10:427, 1987.

    Google Scholar 

  52. Zimmerman, E. C. The influence of temperature on polarization capacity and resistance.Phys. Rev. 35:543–555, 1930.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geddes, L.A. Historical evolution of circuit models for the electrode-electrolyte interface. Ann Biomed Eng 25, 1–14 (1997). https://doi.org/10.1007/BF02738534

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02738534

Keywords

Navigation