Skip to main content
Log in

Cloud chamber study of penetrating showers underground

  • Published:
Il Nuovo Cimento (1955-1965)

Summary

A multiplate cloud chamber containing fifteen lead plates of 1 cm thick was used to observe penetrating showers underground. Fifteen and twenty-three penetrating showers, having four secondary shower particles on the average, have been obtained during 667.9 h and 3 603.1 h at 50 m w.e. and 250 m w.e., respectively. Special attention was paid to distinguish penetrating showers produced by μ-mesons from those by the nucleonic component, the chamber of large width (100 cm) having been set as close to the upper wall in the tunnel as possible. Almost all of the observed showers produced by isolated incident particles are considered as probably produced by μ-mesons (namedP-showers phenomenologically), and those by one of two or more incident particles as due to the nucleonic component (namedS-showers), since the m.f.p. of the nucleonic component for nuclear interaction is about 10−4 times shorter than that of μ-mesons. After correcting for the triggering efficiency of the apparatus, the ratios of frequencies ofS-showers to that ofP-showers have turned out to be 1.1 ± 0.3 and 0.92 ± 0.23 at both depths, which means that a half of the high energy nuclear interactions underground is produced by the nucleonic component. The depth dependence of frequencies ofP-showers is compared with the prediction by Weizsäcker and Williams’ treatment of μ-meson interactions. In addition, it has remarkably been observed thatP-showers have a characteristic different from that ofS-showers,i.e., the average number of heavily ionizing secondaries ofP-showers is 0.3 per shower, while the value ofS-showers is 2.8 per shower.

Riassunto

Si usa, per osservare gli sciami penetranti sottoterra, una camera a nebbia a lastre multiple contenente quindici lastre di piombo dello spessore di 1 cm ciascuna. In 667.9 h ed a 50 m a.e. si ottengono quindici sciami penetranti in 3 603.1 h, ed a 250 m a.e. si ottengono ventitrè sciami penetranti, aventi, rispettivamente, in media, quattro particelle secondarie. Poichè la camera, di grande larghezza (100 cm), è stata posta quanto più vicino possibile alla parete superiore del tunnel, si rivolge particolare attenzione nel distinguere gli sciami penetranti prodotti dai mesoni μ da quelli prodotti dalla componente nucleonica. Quasi tutti gli sciami generati da particelle isolate incidenti (chiamati fenomenologicamente sciamiP) si considerano come prodotti con ogni probabilità dai mesoni μ, mentre si riguardano come dovuti alla componente nucleonica quegli sciami (chiamati sciamiS) generati da una sola delle due o più particelle incidenti, ciò per il fatto che il cammino libero medio della componente nucleonica per le interazioni nucleari, è di circa 10−4 volte più breve di quello dei mesoni μ. Eseguita la correzione per il rendimento dell’apparecchio, si trova che i rapporti fra le frequenze degli sciamiS e degli sciamiP sono 1.1±0.3 e 0.92±0.23 ad entrambe le profondità, la qual cosa significa che metà delle interazioni nucleari sotterranee di alta energia è prodotta dalla componente nucleonica. Si confronta la dipendenza delle frequenze degli sciamiP dalla profondità, con le previsioni della trattazione di Weizsäcker e Williams sulle interazioni dei mesoni μ. Si è osservato inoltre, che gli sciamiP hanno, in modo rimarchevole, caratteristiche diverse da quelle degli sciamiS, cioè il numero medio di secondari fortemente ionizzati degli sciamiP è 0.3 per sciame, mentre il valore per gli sciamiS è 2.8 per sciame.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. See, for example,J. Rainwater:Ann. Rev. Nucl. Sci.,7, 1 (1957).

    Article  ADS  Google Scholar 

  2. R. L. Garwin, L. M. Lederman andM. Weinrich:Phys. Rev.,105, 1415 (1957).

    Article  ADS  Google Scholar 

  3. T. Coffin, R. L. Garwin, L. M. Lederman, S. Penman andA. M. Sachs:Phys. Rev.,106, 1108 (1957).

    Article  ADS  Google Scholar 

  4. T. Fazzini, G. Fidecaro, A. W. Merrison, H. Paul andA. V. Tollestrup:Phys. Rev. Lett.,1, 247 (1958).

    Article  ADS  Google Scholar 

  5. S. Fukui, T. Kitamura andY. Watase:Progr. Theor. Phys.,19, 348 (1958),Phys. Rev. 113, 315 (1959).

    Article  ADS  Google Scholar 

  6. For example,G. N. Fowler andA. W. Wolfendale:Progress in Elementary Particle and Cosmie Ray Physics, vol.4 (edited byJ. G. Wilson andS. A. Wouthuysen, Amsterdam, 1957), p. 105.

  7. E. P. George andJ. Evans:Proc. Phys. Soc. (London), A63, 1248 (1958); A68, 829 (1955).

    ADS  Google Scholar 

  8. C. F. von Weizsäcker:Zeits. f. Phys.,88, 612 (1934).

    Article  Google Scholar 

  9. E. J. Williams:Proc. Roy. Soc., A139, 163 (1933);Kgl. Dansk. Vid. Selsk.,13, no. 4 (1935).

    Article  ADS  Google Scholar 

  10. S. Higashi, M. Oda, T. Oshio, H. Shibata, K. Watanabe andY. Watase:Progr. Theor. Phys.,16, 250 (1956).

    Article  ADS  Google Scholar 

  11. G. N. Fowler andA. W. Wolfendale:Nucl. Phys.,3, 299 (1957).

    Article  Google Scholar 

  12. P. E. Argan, A. Gigli andS. Sciuti:Nuovo Cimento,11, 530 (1954).

    Article  Google Scholar 

  13. S. Higashi, M. Oda, T. Oshio, H. Shibata, K. Watanabe andY. Watase:Journ. Phys. Soc. Japan,11, 1021 (1956).

    Article  ADS  Google Scholar 

  14. D. Kessler andR. Maze:Physica,22, 69 (1956).

    Article  ADS  Google Scholar 

  15. P. H. Barret, M. L. Bollinger, G. Cocconi, Y. Eisenberg andK. Greisen:Rev. Mod. Phys.,24, 133 (1952).

    Article  ADS  Google Scholar 

  16. D. Kessler andR. Maze:Nuovo Cimento,5, 1540 (1957).

    Article  Google Scholar 

  17. S. Higashi, T. Oshio, H. Shibata, K. Watanabe andY. Watase:Nuovo Cimento,5, 592 (1957).

    Article  Google Scholar 

  18. S. Higashi, T. Oshio, H. Shibata, K. Watanabe andY. Watase:Nuovo Cimento,5, 597 (1957).

    Article  Google Scholar 

  19. The chamber used byKessler et al. (16) has dimension of about 56 cm square and 85 cm height, and this consideration for setting seems not to have been taken into account.

  20. In the tables, photographs having no incident penetrating particles are those in which there are a little more electrons than are in photographs taken by random triggering. Or otherwise they are those each showing a dense electron cascade having entered the chamber through its side faces. Almost all the events containing one incident penetrating particle are those in which a single penetrating particle enters the chamber and produces a small electron cascade in a lead absorber below the chamber. In this case, also, there are contained penetrating showers produced by a single penetrating particle in a lead plate in the chamber, which are phenomenologically namedP-showers. Photographs with two or more incidents, on the other hand, are those representing secondary penetrating particles which were produced above the chamber and penetrated through it. In these events there are found a number of nuclear interactions, both stars and penetrating showers, the latter being namedS-showers. In addition, M.P.P.’s (19) are contained in the cases of two or more incident penetrating particles, but description about them will be given in another paper.

  21. W. O. Lock andG. Yekutieli:Phil. Mag.,43, 234 (1952).

    Article  Google Scholar 

  22. U. Camerini, W. O. Lock andD. H. Perkins:Progr. in Cosmic Ray Phys., vol.1 (edited byJ. G. Wilson, Amsterdam, 1952), p. 1.

    Google Scholar 

  23. M. Blau andA. R. Oliver:Phys. Rev.,102, 489 (1956).

    Article  ADS  Google Scholar 

  24. L. Yuan andS. Lindenbaum:Phys. Rev.,85, 1827 (1952);88, 1017 (1952).

    Google Scholar 

  25. W. Imhof, E. A. Knapp, H. M. Watson andV. Perez-Mendez:Phys. Rev.,108, 1040 (1957).

    Article  ADS  Google Scholar 

  26. K. A. Brückner, R. Serber andK. M. Watson:Phys. Rev.,84, 258 (1951).

    Article  ADS  Google Scholar 

  27. S. T. Butler:Phys. Rev.,87, 1117 (1952).

    Article  ADS  Google Scholar 

  28. R. R. Wilson:Phys. Rev.,86, 125 (1952);104, 218 (1956).

    Article  ADS  Google Scholar 

  29. S. Takagi:Progr. Theor. Phys.,1, 123 (1952).

    Article  ADS  Google Scholar 

  30. W. L. Kraushaar andL. J. Marks:Phys. Rev.,93, 326 (1954).

    Article  ADS  Google Scholar 

  31. H. W. Lewis:Rev. Mod. Phys.,24, 241 (1952);Proc. of 7th Rochester Conf. on High Energy Nuclear Phys., XI-1.

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

They also wish to express their appreciation to the Shizuoka Railway Operating Divisional Office for permitting them to make the observation in the Isohama Tunnel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Higashi, S., Mitani, S., Oshio, T. et al. Cloud chamber study of penetrating showers underground. Nuovo Cim 13, 265–283 (1959). https://doi.org/10.1007/BF02732936

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02732936

Navigation