Skip to main content
Log in

Biochemical and immunofluorescence analysis of the constitutively expressed HSP27 stress protein in monkey CV-1 cells

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

The α-crystallin-related stress protein HSP27, which promotes cellular resistance to different types of stress, is constitutively expressed during the growth of several primate tissue culture cells. Here, we report an analysis of the cellular localization of this protein in CV-1 monkey cells. Following cell lysis and fractionation in the absence of detergent about 2 5 % of the cellular content of HSP27 was recovered in the particu late fractions while the remaining of this protein was in the soluble cytoplasmic fraction. This association of HSP27 with particulate fractions was no more observed when cells were lysed in the presence of non-ionic detergent or when cells were pretreated with drugs, such as monensin and colcemid, that disrupt cytoskeletal architecture. Immunofluorescence analysis revealed that HSP27 is concentrated in a polarized perinuclear zone of CV-1 cells from where microtubules radiate. The particular locale of HSP27 was investigated in cells exposed to drugs or treatments, such as monensin, colcemid, cold stess and serum starvation, that disrupt the cellular architecture of microtubules. A correlation was observed between HSP27 cellular locale and microtubules integrity. Our results suggest a possible interaction of a fraction of HSP27 with cytoplasmic organelles or structures, different from the Golgi apparatus, whose distribution depends upon the organization of microtubules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Arrigo A-P 1990a Tumor necrosis factor alpha induces the rapid phosphorylation of the mammalian low molecular weight heat shock protein HSP28;Mol. Cell. Biol. 10 1276–1280

    PubMed  CAS  Google Scholar 

  • Arrigo A-P 1990b The monovalent ionophore monensin maintains the nuclear localization of the human stress protein HSP28 during heat shock recovery;J. Cell. Sci. 96 419–427

    PubMed  CAS  Google Scholar 

  • Arrigo A-P and Landry J 1994 Expression, cellular locale and function of the small stress proteins; inThe biology of heat shock proteins and molecular chaperones (eds) R Morimoto, A Tissières and C Georgopoulos (New-York: Cold Spring Harbor Press) pp 335–373

    Google Scholar 

  • Arrigo A-P and Michel M R 1991 Decreased heat- and tumor necrosis factor-mediated HSP28 phosphorylation in thermotolerant Hela cells;FEBS Lett. 282 152–156

    Article  PubMed  CAS  Google Scholar 

  • Arrigo A-P, Suhan J and Welch W J 1988 Dynamic changes in the structure and locale of the mammalian low molecular weight heat shock protein;Mol. Cell. Biol. 8 5059–5071

    PubMed  CAS  Google Scholar 

  • Arrigo A-P and Welch W J 1987 Characterization and purification of the mammalian 28,000 dalton heat shock protein;J. Biol. Chem. 262 15359–15369

    PubMed  CAS  Google Scholar 

  • Berger E M and Woodward M P 1983 Small heat shock proteins ofDrosophila may confer thermal tolerance;Exp. Cell. Res. 147 437–442

    Article  PubMed  CAS  Google Scholar 

  • Chang Ho W, Allan V, van Meer G J, Berger E G and Kreis T E 1989 Reclustering of scattered Golgi elements occur along microtubules;Eur. J. Cell. Biol. 48 50–63

    Google Scholar 

  • Collier N C, Heuser J, Aach-Levy M and Schlesinger M 1988 Ultrastructural and biochemical analysis of the stress granules in chicken embryo fibroblasts;J. Cell. Biol. 106 1131–1139

    Article  PubMed  CAS  Google Scholar 

  • Collot M, Louvard D and Singer S J 1984 Lysosomes are associated with microtubules and not with intermediate filaments in cultured fibroblasts;Proc. Natl. Acad. Sci. USA 81 788–792

    Article  PubMed  CAS  Google Scholar 

  • de Jong W W, Hendricks W, Mulders J W M and Bloemendal 1989 Evolution of eye lens crystallin: The stress connection;Trends Biochem. Sci. 14 365–368

    Article  PubMed  Google Scholar 

  • Dudani A K, Austin R C, Venner T J and R S Gupta 1990 Effects of antimitotic and antimitochondrial agents on the cellular distribution of microtubules and mitochondria;Cytobios 63 95–108

    PubMed  CAS  Google Scholar 

  • Griffiths G and Gruenberg J 1991 The arguments for pre-existing early and late endosomes;Trends Cell Biol. 1 5–9

    Article  PubMed  CAS  Google Scholar 

  • Gruenberg J, Griffiths G and Howell K E 1989 Characterization of the early endosomes and putative endocytic carrier vesiclesin vivo and with an assay of vesicle fusionin vitro;J. Cell. Biol. 108 1301–1316

    Article  PubMed  CAS  Google Scholar 

  • Gupta R S 1990a Microtubules, mitochondria, and molecular chaperones: a new hypothesis forin vivo assembly of microtubules;Biochem. Cell Biol. 68 1352–1363

    Article  PubMed  CAS  Google Scholar 

  • Gupta R S 1990b Mitochondria, molecular chaperone protein and thein vivo assembly of microtubules;Trends. Biochem. Sci. 15 415–418

    Article  PubMed  Google Scholar 

  • IngoliaT D and Craig E 1982 Four smallDrosophila heat shock proteins are related to each other and to mammalian alpha-crystallin;Proc. Natl. Acad. Sci. USA 79 2360–2364

    Article  Google Scholar 

  • Kääriänen L, Hashimoto K, Saraste J, Virtanen I and Penttinen K 1980 Monensin and FCCP inhibit the intracellular transport of alpha-virus membrane glycoproteins;J. Cell. Biol. 87 788–791

    Google Scholar 

  • Kaur P, Welch W J and Salklatvala J 1989 Interleukin-1 and tumor necrosis factor increase the phosphorylation of the small heat shock protein;FEBS Lett. 58 269–273

    Article  Google Scholar 

  • Kelly R L 1990 Microtubules, membrane traffic and cell organization;Cell 61 5–7

    Article  PubMed  CAS  Google Scholar 

  • Kreis T E, Matteoni R, Hollinshead M and Tooze J 1989 Secretory granules and endosomes show saltatory movement biased to the anterograde and retrograde directions respectively along microtubules in AtT20 cells;Eur. J. Cell. Biol. 48 50–63

    Google Scholar 

  • Kuismanen E, Hedman K, Saraste J and Pettersson R F 1982 Uukuniemi virus maturation: accumulation of virus particles and viral antigens in the Golgi complex;Mol. Cell. Biol. 2 1444–1458

    PubMed  CAS  Google Scholar 

  • Landry J, Chretein P, Lambert H, Hickey E and Weber L A 1989 Heat shock resistance conferred by expression of the human HSP27 gene in rodent cells;J. Cell. Biol. 109 7–15

    Article  PubMed  CAS  Google Scholar 

  • Lavoie J N, Hickey E, Weber L A and Landry J 1993 Modulation of actin microfilament dynamics and fluid phase pinocytosis by phosphorylation of heat shock protein-27;J. Biol. Chem. 268 24210–24214

    PubMed  CAS  Google Scholar 

  • Lippincott-Schwartz J, Donaldson J G, Schweizer A, Berger E G, Hauri H P, Yuan L C and Klausner R D 1990 Microtubule-dependent zehagrade transport of proteins into the ER in the presence of biefeldin A suggests an ER recycling pathway;Cell 60 821–836

    Article  PubMed  CAS  Google Scholar 

  • Matteoni R and Kreis T E 1987 Translocation and clustering of endosomes and lysosomes depends on microtubules;J. Cell. Biol. 105 1253–1265

    Article  PubMed  CAS  Google Scholar 

  • Mehlen P and Arrigo A-P 1994 The serum-induced phosphorylation of the mammalian small stress protein correlates with changes in its intracellular localization and levels of oligomerization;Eur. J. Biochem. 221 321–334

    Article  Google Scholar 

  • Mehlen P, Briolay J, Smith L, Diaz-Latoud C, Fabre N, Pauli D and Arrigo A-P 1993 Analysis of the resistance to heat and hydrogen peroxide stresses in COS cells transiently expressing wild type or deletion mutants of theDrosophila 27-kDa heat shock protein;Eur. J. Biochem. 215 277–284

    Article  PubMed  CAS  Google Scholar 

  • Mehlen P, Preville X, Chareyron P, Briolay J, Klemenz R and Arrigo A-P 1995a Constitutive expression of human HSP27,Drosophila HSP27 and human α-B crystallin confers resistance to tumor necrosis factor-and oxidative stress-induced cytotoxicity in stably transfected murine L929 fibroblasts;J. Immunol. 154 363–374

    PubMed  CAS  Google Scholar 

  • Mehlen P, Mehlen A, Guillet D, Preville X and Arrigo A-P 1995b Tumor necrosis factor alpha induces changes in the phosphorylation, cellular localization and oligomerization of human HSP27, a stress protein which confers cellular resistance to this cytokine;J. Cell. Biochem. 58 248–259

    Article  PubMed  CAS  Google Scholar 

  • Miron T, Vancompernolle K, Vanderkerckhove J, Wilchek M and Geiger B 1991A 25-kD inhibitor of actin polymerization is a low molecular mass heat shock protein;J. Cell. Biol. 114 255–261

    Article  PubMed  CAS  Google Scholar 

  • Morimoto R I, Tissieres A and Georgopoulos C 1990Stress proteins in biology and medicine (New-York: Cold Spring; Harbor Laboratory Press)

    Google Scholar 

  • Moskalewsky S J, Thyberg J and Friberg U 1980 Cold and metabolic inhibitor effects on cytoplasmic microtubules and the Golgi complex in rat epiphyseal chondrocytes;Cell Tissue Res. 210 403–415

    Google Scholar 

  • Nover L 1984Heat shock response of eukaryotic cells (Berlin, Heidelberg, New-York, Tokyo: Springer-Verlag)

    Google Scholar 

  • OiNeill L A J, Bird T A and Salklatvala J 1990 Interleukin-1 signal transduction;Immunol. Today 11 391–394

    Article  Google Scholar 

  • Pavelka M and Ellinger A 1983 Effect of colchicine on the Golgi complex of rat acinar cells;J. Cell. Biol. 97 737–748

    Article  PubMed  CAS  Google Scholar 

  • Pelham H R B 1989 Control of protein exit from the endoplasmic reticulum;Annu. Rev. Cell. Biol. 5 1–23

    Article  PubMed  CAS  Google Scholar 

  • Rodzial M M and Haimo L T 1986 Bidirectional pigment granule movements of melanophores are regulated by protein phosphorylation and dephosphorylation;Cell 47 1061–1070

    Article  Google Scholar 

  • Saraste J, Palade G E and Farquar M G 1987 Antibodies to rat pancreas Golgi-subfractions:identification of a 58-kD cis-Golgi protein;J. Cell Biol. 105 2021–2030

    Article  PubMed  CAS  Google Scholar 

  • Seizen R J, Bindel J G and Hoenders H J 1978 The quaternary structure of bovine alpha-crystallin;Eur. J. Biochem. 91 387–396

    Article  Google Scholar 

  • Tartakoff A M and Vassalli P 1983 Lectin binding sites as marker of Golgi subcompartment proximal to distal maturation of glucosaccharides;J. Cell. Biol. 97 1243–1248

    Article  PubMed  CAS  Google Scholar 

  • Thyberg J and Moskalewsky S 1985 Microtubules and the organization of the Golgi complex;Exp. Cell. Res. 159 1–16

    Article  PubMed  CAS  Google Scholar 

  • Turner J Rand Tartakoff A M 1989 The response of the Golgi complex to microtubule alterations:The roles of metabolic energy and membrane traffic in Golgi complex organization;J. Cell. Biol. 109 2081–2088

    Article  PubMed  CAS  Google Scholar 

  • Virtanen I, Elkblom P and Laurila P 1980 Subcellular compartmentalization of saccharides moities in cultured normal and malignant cells;J. Cell. Biol. 85 429–434

    Article  PubMed  CAS  Google Scholar 

  • Wehland J, Henkart M, Klausner R and Sandovap I V 1983 Role of microtubules in the distribution of the Golgi apparatus: Effect of taxol and microinjected anti-alpha-tubulin antibodies;Proc. Natl. Acad. Sci. USA,80 4286–4290

    Article  PubMed  CAS  Google Scholar 

  • Welch W J 1985 Phorbal ester, calcium ionophore, or serum added to quiescent rat embryo fibroblast cells result in the elevated phosphorylation of two 28,000 dalton mammalian stress proteins;J. Biol. Chem. 260 3058–3062

    PubMed  CAS  Google Scholar 

  • Wistow G 1985 Domain structure and evolution in alpha-crystallins and small heat shock proteins;FEBS Lett. 181 1–6

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. -P. Arrigo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Preville, X., Mehlen, P., Fabre-Jonca, N. et al. Biochemical and immunofluorescence analysis of the constitutively expressed HSP27 stress protein in monkey CV-1 cells. J Biosci 21, 221–234 (1996). https://doi.org/10.1007/BF02703110

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02703110

Keywords

Navigation