Skip to main content
Log in

Effects of sodium-orthovanadate andTrigonella foenum-graecum seeds on hepatic and renal lipogenic enzymes and lipid profile during alloxan diabetes

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Sodium-orthovanadate (SOV) and seed powder ofTrigonella foenum graecum Linn. (common name: fenugreek, family: Fabaceae) (TSP) besides being potential hypoglycemic agents have also been shown to ameliorate altered lipid metabolism during diabetes. This study evaluates the short-term effect of oral administration of SOV and TSP separately and in concert (for 21 days) on total lipid profile and lipogenic enzymes in tissues of alloxan diabetic rats. Diabetic rats showed 4-fold increase in blood glucose. The level of total lipids, triglycerides and total cholesterol in blood serum increased significantly during diabetes. During diabetes the level of total lipids increased significantly (P < 0001) in liver and in kidney by 48% and 55%, respectively, compared to control. Triglycerides level increased by 32% (P < 001) in liver and by 51% (P < 0005) in kidney, respectively, compared to control. Total cholesterol level also increased significantly in both liver and kidney (P < 0.01 andP < 0001, respectively). The activities of NADP-linked enzymes; namely glucose-6-phosphate dehydrogenase (G6PDH), malic enzyme (ME), isocitrate dehydrogenase (ICDH), and the activities of lipogenic enzymes namely ATP-citrate lyase ΜTP-CL) and fatty acid synthase (FAS) were decreased significantly in liver and increased in kidney during diabetes as compared to control. SOV and TSP administration to diabetic animals prevented the development of hyperglycemia and alteration in lipid profile in plasma and tissues and maintained it near normal. Maximum prevention was observed in the combined treatment with lower dose of SOV (0.2%) after 21 days. We are presenting for the first time effectiveness of combined treatment of SOV and TSP in amelioration of altered lipid metabolism during experimental type-I diabetes

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

FAA:

Free fatty acids

FAS:

fatty acid synthase

G6PDH:

glucose-6-phosphate dehydrogenase

ICDH:

isocitrate dehydrogenase

SOV:

sodium-orthovanadate

TSP:

Trigonella seed powder

References

  • Agius L and Vaartjes W J 1982 The effects of orthovanadate on fatty acid synthesis in isolated rat hepatocytes;Biochem. J. 202 791–794

    PubMed  CAS  Google Scholar 

  • Ahmed I, Adeghate E, Sharma A K, Pallot D J and Singh J 1998 Effects ofMomordica charantia fruit juice on islet morphology in the pancreas of the Streptozotocin diabetic rat;Diabetes Res. Clin. Pract. 40 145–151

    Article  PubMed  CAS  Google Scholar 

  • Al-Habori M and Raman A 1998 Antidiabetic and hypocholesterolaemic effect of fenugreek;Phytother. Res. 12 233–242

    Article  Google Scholar 

  • Arky R A 1982 Clinical correlates of metabolic derrangements of diabetes mellitus; inComplications of diabetes mellitus (ed.) G P Kozak (Philadelphia: W B Saunders) pp 16–20

    Google Scholar 

  • Bach J F 1995 Insulin-dependent diabetes mellitus as a Β-cell targeted disease of immunoregulation;J. Autoimmun. 8 439–463

    Article  PubMed  CAS  Google Scholar 

  • Baquer N Z, Cascales M, McLean P and Greenbaum A L 1976 Effects of thyroid deficiency on the distribution of hepatic metabolism and control of pathways of carbohydrate metabolism in liver and adipose tissue of the rat;Eur. J. Biochem. 68 403–413

    Article  PubMed  CAS  Google Scholar 

  • Baquer N Z, Gupta D and Raju J 1998 Regulation of metabolic pathways in liver and kidney during experimental diabetes. Effect of antidiabetic compounds;Indian J. Clin. Biochem. 13 63–80

    CAS  Google Scholar 

  • Baquer N Z, Sinclair M, Kunjara S, Yadav U C and McLean P 2003 Regulation of glucose utilization and lipogenesis in adipose tissue of diabetic and fat fed animals: Effects of insulin and manganese;J. Biosci. 28 215–221

    PubMed  CAS  Google Scholar 

  • Bloom A J and Ireland A 1992Color atlas of diabetes 2nd edition (London: Wolfe Publication) pp 10–38

    Google Scholar 

  • Brichard S M, Okitolonda W and Henequin J C 1988 Long term improvement of glucose homeostasis by vanadate treatment in diabetic rats;Endocrinology 123 2048–2053

    Article  PubMed  CAS  Google Scholar 

  • Brichard SM, Ongemba L N, Girard J and Henquin J C 1994 Tissue-specific correction of lipogenic enzyme gene expression in diabetic rats given vanadate;Diabetologia 37 1065–1072

    PubMed  CAS  Google Scholar 

  • Broca C, Gross R, Petit P, Sauvaire Y, Manteghetti M, Tournier M, Masiello P, Gomis R and Ribes G 1999 4-Hydroxyisoleucine: experimental evidence of its insulinotropic and antidiabetic properties;Am. J. Physiol. 277 E617-E623

    PubMed  CAS  Google Scholar 

  • Chaterjea M N and Shinde R 1994 Metabolism of carbohydrate Part II; inText book of medical biochemistry 1st edition (New Delhi: Jay Pee Brothers Medical publishers) p. 421

    Google Scholar 

  • Cryer P 1992 Iatrogenic hypoglycemia as a cause of hypoglycemia associated autonomic failure in IDDM: a vicious cycle;Diabetes 41 255–260

    Article  PubMed  CAS  Google Scholar 

  • Dafnis E and Sabatini S 1994 Biochemistry and pathology of vanadium;Nephron 67 133–143

    Article  PubMed  CAS  Google Scholar 

  • Domingo J L 2002 Vanadium and Tungsten derivatives as antidiabetic agents: a review of their toxic effects;Biol. Trace. Elem. Res. 88 97–112

    Article  PubMed  CAS  Google Scholar 

  • Domingo J L, Gomez M and Sanchez D J 1995 Toxicology of vanadium compounds in diabetic rats: The action of chelating agents on vanadium accumulation;Mol. Cell. Biochem. 153 233–240

    Article  PubMed  CAS  Google Scholar 

  • Domingo J L, Gomez M, Llobet J M, Corbella J and Keen C L 1991 Improvement of glucose homeostasis by oral vanadyl or vanadate treatment in diabetic rat is accompanied by negative side effects;Pharmacol. Toxicol. 68 249–253

    PubMed  CAS  Google Scholar 

  • Ezaki O 1990 Insulin like effects of selenate in rat adipocytes;J. Biol. Chem. 265 1124–1128

    PubMed  CAS  Google Scholar 

  • Folch J, Lees M and Stanley G H S 1957 A simple method for the isolation and purification of total lipids from animal tissues;J. Biol. Chem. 226 497–509

    PubMed  CAS  Google Scholar 

  • Goto Y, Kida K and Ikeachi M 1992 Synergism in insulin like effects of molybdate plus hydrogen peroxide or tungstate plus hydrogen peroxide on glucose transport by isolated rat adipocytes;Biochem. Pharmacol. 44 174–177

    Article  PubMed  CAS  Google Scholar 

  • Guijarro C, Kasiske B L, Kim Y, O’Donnell M P, Lee H S and Keane W F 1995 Early glomerular changes in rats with dietary-induced hypercholesterolemia;Am. J. Kidney Dis. 26 152–161

    PubMed  CAS  Google Scholar 

  • Gupta D, Raju J, Prakash J and Baquer N Z 1999 Change in the lipid profile, lipogenic and related enzymes in the livers of experimental diabetic rats: effect of insulin and vanadate;Diabetes Res. Clin. Pract. 46 1–7

    Article  PubMed  CAS  Google Scholar 

  • Heyliger C E, Tahiliani A J and McNeill J H 1985 Effects of vanadate on elevated blood glucose and depressed cardiac performance of diabetic rats;Science 227 1474–1476

    Article  PubMed  CAS  Google Scholar 

  • Khosla P, Gupta D D and Nagpal R K 1995 Effect ofTrigonella foenum-graecum (Fenugreek) on blood glucose in normal and diabetic rats;Indian J. Physiol. Pharmacol. 39 173–174

    PubMed  CAS  Google Scholar 

  • Kimmelsteil P and Wilson C 1936 Intercapilary lesion in the glomeruli of the kidney;Am. J. Pathol. 12 83–105

    Google Scholar 

  • Lakshmanan M R, Nepokroeff C M and Porter J W 1972 Control of the synthesis of fatty acid synthetase in rat liver by insulin, glucagon and adenosine-3′5′cyclic monophosphate;Proc. Natl. Acad. Sci. USA 69 3516–3519

    Article  PubMed  CAS  Google Scholar 

  • Lee H S, Lee J S, Koh H I and Ko K W 1991 Intraglomerular lipid deposition in routine biopsies;Clin. Nephrol. 36 67–75

    PubMed  CAS  Google Scholar 

  • Madar Z L and Thorne R 1987 Dietary fiber;Prog. Food Nutr. Sci. 11 153–174

    PubMed  CAS  Google Scholar 

  • Meyer C, Stumvoll M, Nadkarni V, Dostou J, Mitrakou A and Gerich J 1998 Abnormal renal and hepatic glucose metabolism in type 2 diabetes mellitus;J. Clin. Invest. 102 619–624

    PubMed  CAS  Google Scholar 

  • Moller D E 2001 New drug targets for type 2 diabetes and the metabolic syndrome a review;Nature (London) 414 821–827

    Article  CAS  Google Scholar 

  • Moorthy R, Prabhu K M and Murthy P S 1989 Studies on the isolation and effect of orally active hypoglycemic principle from the seed of fenugreek (Trigonella Foenum-graecum);Diabetes Bull. 9 69–72

    Google Scholar 

  • Murthy P S 1995 Potential of medicinal plants for the treatment of diabetes mellitus and other diseases;Indian J. Clin. Biochem. 10 52–53

    Article  Google Scholar 

  • Nandhini D, Maneemegalai S, Elangovan V, Sekar N and Govindasamy S 1993 Insulin-like effects of bis-glycinato oxovanadium (IV) complex on experimental diabetic rats;Indian J. Biochem. Biophys. 30 73–76

    PubMed  CAS  Google Scholar 

  • Petit P R, Sauvaire Y D, Hillaire-Buys D M, Leconte O M, Baissac Y G, Ponsin G R and Ribes G R 1995 Steroid saponins from fenugreek seeds: extraction, purification, and pharmacological investigation on feeding behaviour and plasma cholesterol;Steroids 60 674–680

    Article  PubMed  CAS  Google Scholar 

  • Raju J, Gupta D, Rao A R, Yadava P K and Baquer N Z 2001Trigonella foenum-graecum (fenugreek) seed powder improves glucose homeostasis in alloxan diabetic rat tissues by reversing the altered glycolytic, gluconeogenic and lipogenic enzymes;Mol. Cell. Biochem. 224 45–51

    Article  PubMed  CAS  Google Scholar 

  • Ramakrishna S, Murthy K S and Benzamin W B 1989 Effect of insulin on ATP-citrate lyase phosphorylation. Regulation of peptide A and peptide B phosphorylation;Biochemistry 28 856–860

    Article  PubMed  CAS  Google Scholar 

  • Ramasarma T 1996 Vanadium complexes with insulin-mimetic actions A second line of protection against diabetes;Indian J. Clin. Biochem. 11 92–107

    CAS  Google Scholar 

  • Reichard P, Nilsson B Y and Rosenquist U 1993 The effect of long-term intensified insulin treatment on the development of microvascular complications of diabetes mellitus;N. Engl. J. Med. 329 304–309

    Article  PubMed  CAS  Google Scholar 

  • Saggerson E D and Greenbaum A L 1970 The regulation of triglyceride synthesis and fatty acid synthesis in rat epididymal adipose tissue;Biochem. J. 119 221–242

    PubMed  CAS  Google Scholar 

  • Sahng-Wook P, Kyung-Sup K, Suk-Kuy W, Jin-Soo K and Yoon-Soo K 1994 Induction of hepatic ATP-citrate lyase by insulin in diabetic rats;Yonsei Med. J. 35 25–33

    Google Scholar 

  • Sakurai H 2002 A new concept: The use of vanadium complexes in the treatment of diabetes mellitus;Chem. Rec. 2 237–248

    Article  PubMed  CAS  Google Scholar 

  • Sauvaire Y, Petit P, Broca C, Manteghetti M, Baissac Y, Fernandez-Alvarez J, Gross R, Roye M, Leconte A, Gomis R and Ribes G 1998 4-Hydroxyisoleucine: a novel amino acid potentiator of insulin secretion;Diabetes 47 206–210

    Article  PubMed  CAS  Google Scholar 

  • Scott M and Grundy 1999 Diabetes and cardiovascular disease;Circulation 100 1134–1146

    Google Scholar 

  • Sekar N, Li J and Shechter Y 1996 Vanadium salts as insulin substitute: Mechanism of action, a scientific and therapeutic tool in diabetes mellitus research;Crit. Rev. Biochem. Mol. Biol. 31 339–359

    PubMed  CAS  Google Scholar 

  • Sharma R D, Raghuram T C and Rao N S 1990 Effect of fenugreek seeds on blood glucose and serum lipids in type I diabetes;Eur. J. Clin. Nutr. 44 301–306

    PubMed  CAS  Google Scholar 

  • Sheela C G and Augusti K T 1992 Antidiabetic effects of Sallyl cyteine sulphoxide isolated from garlic,Allium sativum Linn;Indian J. Exp. Biol. 30 523–526

    PubMed  CAS  Google Scholar 

  • Shibib B A, Khan L A and Rahman R 1993 Hypoglycemic activity ofCoccinia indica andMomordica charantia in diabetic rats: Depression of the hepatic gluconeogenic enzymes glucose-6-phosphate and fructose-1,6-bisphosphatase and elevation of both liver and red cell shunt glucose-6-phosphate dehydrogenase;Biochem. J. 292 267–270

    PubMed  Google Scholar 

  • Shinde U A, Mehta A A and Goyal R K 2001 Effect of chronic treatment with Bis(maltolato)oxovanadium (IV) in rat model of non-insulin depedent diabetes;Indian J. Exp. Biol. 39 864–870

    PubMed  CAS  Google Scholar 

  • Shisheva A, Gefel D and Shechter Y 1992 Insulin like effects of zinc ionin vitro andin vivo: preferential effects on desensitized adipocytes and induction of normoglycemia in Streptozotocin induced rats;Diabetes 41 982–988

    Article  PubMed  CAS  Google Scholar 

  • Sochor M, Baquer N Z and McLean P 1985 Glucose over and underutilization in diabetes: Comparative studies on the changes in activities of enzymes of glucose metabolism in rat kidney and liver;Mol. Physiol. 7 51–68

    CAS  Google Scholar 

  • Sochor S, Baquer N Z, Ball M R and McLean P 1987 Regulation of enzymes of glucose metabolism and lipogenesis in diabetic rat liver by thyroid hormones;Biochem. Int. 15 619–627

    PubMed  CAS  Google Scholar 

  • Srere P A 1972 The citrate enzymes: their structures, mechanisms, and biological functions a review;Curr. Top. Cell. Regul. 5 229–283

    PubMed  CAS  Google Scholar 

  • Srivastava A K 2000 Antidiabetic and toxic effects of vanadium compounds;Mol. Cell. Biochem. 206 177–182

    Article  PubMed  CAS  Google Scholar 

  • Sun L, Halaihel N, Zhang W, Rogers T and Levi M 2002 Role of sterol regulatory element-binding protein 1 in regulation of renal lipid metabolism and glomerulosclerosis in diabetes mellitus;J. Biol. Chem. 277 18919–18927

    Article  PubMed  CAS  Google Scholar 

  • West K M 1982 Hyperglycemia as a cause of long-term complications; inComplications of diabetes 2nd edition (ed.) H Keen (London: Jarret Edward Arnold) pp 3–18

    Google Scholar 

  • Yoshikawa M, Murakami T, Komatsu H, Murakami N, Yamahara J and Matsuda H 1997 Medicinal foodstuffs IV Fenugreek seed (1): structures of trigoneosides Ia, Ib, IIa, IIb, IIIa, and IIIb, new furostanol saponins from the seeds of IndianTrigonella foenum-graecum L.;Chem. Pharm. Bull. (Tokyo) 45 81–87

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Najma Z. Baquer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yadav, U.C.S., Moorthy, K. & Baquer, N.Z. Effects of sodium-orthovanadate andTrigonella foenum-graecum seeds on hepatic and renal lipogenic enzymes and lipid profile during alloxan diabetes. J Biosci 29, 81–91 (2004). https://doi.org/10.1007/BF02702565

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02702565

Keywords

Navigation